Responder
**Problem 34:**
- **Linear Function (\( A x + B y = C \)):**
- **Domain:** All real numbers (\( \mathbb{R} \)) if \( B \neq 0 \); otherwise, a single \( x \)-value.
- **Range:** All real numbers (\( \mathbb{R} \)) unless the line is horizontal.
- **Arithmetic Sequence (\( a_{n} = a_{1} + (n-1) d \)):**
- **Domain:** Positive integers (\( \mathbb{N} \)).
- **Range:** A discrete set of values based on the sequence formula.
**Problem 35:**
Cannot determine whether the sequences are arithmetic without the specific sequences provided.
Solución
### Problem 34: REASONING
**Compare and contrast the domain and range of the linear functions described by \( A x + B y = C \) and \( a_{n} = a_{1} + (n-1) d \).**
---
#### **1. Understanding Each Function**
**a. \( A x + B y = C \):**
- **Type of Function:** This is the general form of a linear equation in two variables, representing a straight line on the Cartesian plane.
- **Solving for \( y \):**
\[
B y = -A x + C \\
y = \left(-\frac{A}{B}\right) x + \frac{C}{B}
\]
*(Assuming \( B \neq 0 \))*
- **Interpretation:** This can be seen as a linear function \( y = m x + b \), where:
- **Slope (\( m \))**: \( -\frac{A}{B} \)
- **Y-intercept (\( b \))**: \( \frac{C}{B} \)
**b. \( a_{n} = a_{1} + (n-1) d \):**
- **Type of Function:** This is the formula for the \( n^{th} \) term of an **arithmetic sequence**.
- **Components:**
- \( a_{1} \): First term of the sequence.
- \( d \): Common difference between consecutive terms.
- \( n \): The term number (a positive integer).
---
#### **2. Domain and Range Comparison**
**a. \( A x + B y = C \):**
- **Domain:**
- If viewed as a function \( y(x) \), the domain is **all real numbers** (\( \mathbb{R} \)), provided \( B \neq 0 \).
- **Exception:** If \( B = 0 \), the equation becomes \( A x = C \), which represents a **vertical line**. In this case:
- **Domain:** \( x = \frac{C}{A} \) (a single value)
- **Range:** All real numbers (\( \mathbb{R} \))
- **Range:**
- Generally, **all real numbers** (\( \mathbb{R} \)) for \( y \), unless the line is horizontal (\( A = 0 \)):
- **For \( A = 0 \):**
- **Range:** \( y = \frac{C}{B} \) (a single value)
- **Domain:** All real numbers (\( \mathbb{R} \))
**b. \( a_{n} = a_{1} + (n-1) d \):**
- **Domain:**
- **Positive integers** (\( \mathbb{N} \)) representing the term positions (\( n = 1, 2, 3, \ldots \)).
- **Range:**
- **Discrete set of values** generated by the sequence.
- Each term \( a_{n} \) is a specific real number based on \( n \).
---
#### **3. Key Contrasts and Comparisons**
- **Domain:**
- **Linear Function (\( A x + B y = C \)):**
- Typically **all real numbers** (if \( B \neq 0 \)).
- **Specific cases** (vertical line) have a single \( x \)-value.
- **Arithmetic Sequence (\( a_{n} \)):**
- **Only positive integers**, representing term positions.
- **Range:**
- **Linear Function:**
- **All real numbers**, unless the function is horizontal, limiting \( y \) to a single value.
- **Arithmetic Sequence:**
- **A discrete set** of values, each determined by the formula for \( a_{n} \).
- **Nature of Output:**
- **Linear Function:** Produces a continuous line in the plane.
- **Arithmetic Sequence:** Produces a sequence of distinct, separate points (terms).
- **Type of Function:**
- **Linear Function:** A function of a real variable (\( x \)) mapping to \( y \).
- **Arithmetic Sequence:** A function of a discrete variable (\( n \)) mapping to term values (\( a_{n} \)).
---
### Problem 35: CHALLENGE
**Determine whether each sequence is an arithmetic sequence. Write**
*(Note: The problem statement appears to be incomplete. To provide a comprehensive answer, please supply the specific sequences that need to be evaluated.)*
---
If you provide the specific sequences for Problem 35, I’d be happy to help determine whether they are arithmetic sequences and explain the reasoning!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución