Pregunta
upstudy study bank question image url

Warning There is a checkbox at the bottom of the exam form that to be lost. Question 1 (Multiple Choice Worth 2 points) (Factoring Algebraic Expressions MC) Rewrite \( x^{4} y^{2}-3 x^{3} y^{3} \) using a common factor. \( 3 x y\left(x^{3} y-x^{2} y\right) \) \( 3 x y^{2}\left(x^{2}-x^{2} y\right) \) \( x^{2} y\left(x y-3 x y^{2}\right) \) \( x^{2} y^{2}\left(x^{2}-3 x y\right) \) Question 2(Multiple Choice Worth 2 points) (Factoring Algebraic Expressions LC) Previous Question

Ask by Nichols Floyd. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct factorization of \( x^{4} y^{2} - 3 x^{3} y^{3} \) is \( x^{2} y^{2}\left(x^{2} - 3 x y\right) \).

Solución

Let's factor the expression \( x^{4} y^{2} - 3 x^{3} y^{3} \) by identifying the greatest common factor (GCF) in each term. 1. **Identify the GCF:** - **For \(x\):** The smallest power of \(x\) in both terms is \(x^3\). - **For \(y\):** The smallest power of \(y\) in both terms is \(y^2\). So, the GCF is \(x^3 y^2\). 2. **Factor out the GCF:** \[ x^{4} y^{2} - 3 x^{3} y^{3} = x^{3} y^{2} (x - 3y) \] However, looking at the provided options, the closest matching factorization is: \[ x^{2} y^{2}\left(x^{2} - 3 x y\right) \] This can be verified by expanding: \[ x^{2} y^{2}\left(x^{2} - 3 x y\right) = x^4 y^2 - 3x^3 y^3 \] which matches the original expression. **Correct Answer:** \[ \boxed{ x^{2} y^{2}\left(x^{2}-3 x y\right) } \] This corresponds to the fourth option provided in the question.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the common factor in the expression \( x^{4} y^{2}-3 x^{3} y^{3} \), you first look for the highest power of each variable that appears in both terms. In this case, both terms include \( x \) and \( y \), leading us to factor out \( x^{3}y^{2} \). This simplifies the expression to \( x^{3}y^{2}(x - 3y) \). Neat, right? In the context of polynomial expressions, common mistakes often arise when forgetting to factor out the greatest common factor completely. Always check your work by expanding your factored form to ensure it equals the original expression. This can help catch any oversights and ensure your factoring skills shine through!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad