2. For numbers \( 2 \mathrm{a}-2 \mathrm{e} \), select True or False for each equation. \( \begin{array}{lll}\text { 2a. } 3 \div \frac{1}{4}=\frac{1}{12} & \text { True } & \text { False } \\ \text { 2b. } 7 \div \frac{1}{2}=14 & \text { True } & \text { False } \\ \text { 2c. } \frac{1}{5} \div 4=20 & \text { True } & \text { False } \\ \text { 2d. } \frac{1}{2} \div 5=\frac{1}{10} & \text { False } \\ \text { 2e. } \frac{1}{7} \div 3=21 & \text { True } & \text { True }\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
When looking at these equations, it’s essential to remember the rule about division by a fraction. Dividing by a fraction is the same as multiplying by its reciprocal! This nifty trick can really save you from confusion. So, for 2a, if you divide 3 by \(\frac{1}{4}\), you’re really asking how many quarters are in 3, which gives you 12, so that's False. In 2b, dividing 7 by \(\frac{1}{2}\) means you’re determining how many halves fit into 7, resulting in 14, making it True! Just a bit of mathematical flair can keep you on the right track!