Pregunta
Give the degree of the polynomial. \[ 16 w^{7} y^{4} u^{3}+6-5 y^{12}-u^{11} w \]
Ask by Ingram Matthews. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The degree of the polynomial is 14.
Solución
To determine the degree of the given polynomial:
\[
16 w^{7} y^{4} u^{3} + 6 - 5 y^{12} - u^{11} w
\]
**Step 1: Identify the degree of each term.**
1. **\(16 w^{7} y^{4} u^{3}\)**
- Exponents: \(w^7\), \(y^4\), \(u^3\)
- Sum of exponents: \(7 + 4 + 3 = 14\)
2. **\(6\)**
- This is a constant term.
- Degree: \(0\)
3. **\(-5 y^{12}\)**
- Exponent: \(y^{12}\)
- Degree: \(12\)
4. **\(-u^{11} w\)**
- Exponents: \(u^{11}\), \(w^1\)
- Sum of exponents: \(11 + 1 = 12\)
**Step 2: Determine the highest degree among all terms.**
- The degrees of the terms are: \(14\), \(0\), \(12\), and \(12\).
- The highest degree is **14**.
**Conclusion:**
The degree of the polynomial is **14**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
The degree of a polynomial is determined by the term with the highest total degree when you sum the exponents of the variables in each term. In the polynomial \( 16 w^{7} y^{4} u^{3}+6-5 y^{12}-u^{11} w \), we have: 1. The term \( 16 w^{7} y^{4} u^{3} \) has a degree of \( 7 + 4 + 3 = 14 \). 2. The constant term \( 6 \) has a degree of \( 0\). 3. The term \( -5 y^{12} \) has a degree of \( 12 \). 4. The term \( -u^{11} w \) has a degree of \( 11 + 1 = 12 \). The highest degree among these terms is \( 14 \). Thus, the degree of the polynomial is \( 14 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium