Determine which of the following points are included in the solution set to the following linear inequality. \[ \begin{array}{l}-7 x+7 y>-11\end{array} \] Answer 2Points Prev \( \quad \square\left(2, \frac{3}{7}\right) \) \( \square(0,0) \) Keyboard Short \( \square(8,-2) \) \( \square(-3,3) \) \( \square(7,-3) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To determine which points satisfy the inequality \(-7x + 7y > -11\), we can substitute the coordinates of each point into the inequality. 1. For the point \( (2, \frac{3}{7}) \): \[ -7(2) + 7\left(\frac{3}{7}\right) = -14 + 3 = -11 \rightarrow \text{not included (since } -11 \text{ is not greater than } -11\text{)} \] 2. For the point \( (0,0) \): \[ -7(0) + 7(0) = 0 \rightarrow 0 > -11 \rightarrow \text{included} \] 3. For the point \( (8, -2) \): \[ -7(8) + 7(-2) = -56 - 14 = -70 \rightarrow -70 > -11 \rightarrow \text{not included} \] 4. For the point \( (-3, 3) \): \[ -7(-3) + 7(3) = 21 + 21 = 42 \rightarrow 42 > -11 \rightarrow \text{included} \] 5. For the point \( (7, -3) \): \[ -7(7) + 7(-3) = -49 - 21 = -70 \rightarrow -70 > -11 \rightarrow \text{not included} \] Thus, the points included in the solution set are \( (0, 0) \) and \( (-3, 3) \).