\( f(x)=2 x^{2}+2 \) and \( g(x)=2^{x}+1 \) are defining equations of graphs of \( f \) and \( g \) resepectively \( 1.1 \quad \) Write down an equation for the asymptote of \( g \). \( 1.2 \quad \begin{array}{l}\text { Sketch the graphs of } f \text { and } g \text { on the same set of axes, clearly showing ALL intercepts } \\ \text { with the axes, turning points and asymptotes. } \\ 1.3 \\ \text { Write down the range of } f \text {. } \\ 1.4 \quad \text { Determine the maximum value of } h \text { if } h(x)=3^{f(x)} \text {. } \\ 1.5 \quad \begin{array}{l}\text { What transformation does the graph of } y=f(x) \text { undergo in order to obtain the graph } \\ \text { of } y=2 x^{2}-2 ?\end{array}\end{array} \) (12)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Extra Insights
The horizontal asymptote of \( g(x) = 2^x + 1 \) is \( y = 1 \). This is because as \( x \) approaches negative infinity, \( 2^x \) approaches 0, making \( g(x) \) approach 1. This horizontal line indicates that the function will never go below this value. When sketching the graphs of \( f(x) \) and \( g(x) \), \( f(x) \) is a parabola opening upwards with a vertex at (0, 2) and intercepts at (0, 2) for the y-axis. Meanwhile, \( g(x) \) starts from (0, 3) and approaches the asymptote at (0, 1). The turning point of \( f(x) \) is its vertex at (0, 2), while \( g(x) \) continues to rise without any turning points.
![](/pmw/img-try-permium.webp)