Responder
\( 4.5 \times 10^{-8} \) is equivalent to \( 0.045 \mu \).
Solución
To determine which values are equivalent to \( 0.045 \mu \), we first need to convert \( 0.045 \mu \) into standard units. Here, \( \mu \) (micro) represents \( 10^{-6} \).
Thus, we can express \( 0.045 \mu \) as:
\[
0.045 \mu = 0.045 \times 10^{-6}
\]
Now, let's convert \( 0.045 \) into scientific notation:
\[
0.045 = 4.5 \times 10^{-2}
\]
So, we can rewrite \( 0.045 \mu \) as:
\[
0.045 \mu = 4.5 \times 10^{-2} \times 10^{-6} = 4.5 \times 10^{-8}
\]
Now, we will evaluate each of the provided options to see if they are equivalent to \( 0.045 \mu \):
1. **\( 4.5 \times 10^{-8} \)**: This is equivalent to \( 0.045 \mu \).
2. **\( 0.000045 \, m \)**: This can be converted to scientific notation:
\[
0.000045 = 4.5 \times 10^{-5} \, m
\]
Since \( 1 \, m = 10^{6} \, \mu \), we have:
\[
0.000045 \, m = 4.5 \times 10^{-5} \times 10^{6} \, \mu = 4.5 \times 10^{1} \, \mu = 45 \, \mu
\]
This is not equivalent to \( 0.045 \mu \).
3. **\( 0.0045 \times 10^{-6} \)**: This can be simplified:
\[
0.0045 = 4.5 \times 10^{-3}
\]
Thus,
\[
0.0045 \times 10^{-6} = 4.5 \times 10^{-3} \times 10^{-6} = 4.5 \times 10^{-9}
\]
This is not equivalent to \( 0.045 \mu \).
4. **\( 45.000 \, p \)**: Since \( 1 \, p = 10^{-12} \), we have:
\[
45.000 \, p = 45.000 \times 10^{-12} = 4.5 \times 10^{-11} \, \mu
\]
This is not equivalent to \( 0.045 \mu \).
5. **\( 4.5 \, n \)**: Since \( 1 \, n = 10^{-9} \), we have:
\[
4.5 \, n = 4.5 \times 10^{-9} = 4.5 \times 10^{-3} \, \mu
\]
This is not equivalent to \( 0.045 \mu \).
In conclusion, the only value that is equivalent to \( 0.045 \mu \) is:
- \( 4.5 \times 10^{-8} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución