Part 2 of 2 Find the dot product \( \mathbf{v} \cdot \mathbf{w} \) and the angle between \( \mathbf{v} \) and \( \mathbf{w} \). \( \mathbf{v}=-4 \mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{w}=\mathbf{i}+4 \mathbf{j}+4 \mathbf{k} \) \( \mathbf{v} \cdot \mathbf{w}=8 \) (Simplify your answer. Type an exact value, using radicals as needed.) 1 The angle between \( \mathbf{v} \) and \( \mathbf{w} \) is \( \theta=\square^{\circ} \). (Do not round until the final answer. Then round to the nearest tenth as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the angle between the vectors \( \mathbf{v} \) and \( \mathbf{w} \), we can utilize the dot product formula: \[ \mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos(\theta) \] Given that \( \mathbf{v} \cdot \mathbf{w} = 8 \), we first need to calculate the magnitudes of \( \mathbf{v} \) and \( \mathbf{w} \): 1. **Magnitude of \( \mathbf{v} \)**: \[ |\mathbf{v}| = \sqrt{(-4)^2 + 2^2 + 1^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \] 2. **Magnitude of \( \mathbf{w} \)**: \[ |\mathbf{w}| = \sqrt{1^2 + 4^2 + 4^2} = \sqrt{1 + 16 + 16} = \sqrt{33} \] Now, substitute these values into the dot product formula: \[ 8 = \sqrt{21} \cdot \sqrt{33} \cdot \cos(\theta) \] Calculating \( \sqrt{21} \cdot \sqrt{33} \): \[ \sqrt{21} \cdot \sqrt{33} = \sqrt{693} \] So we have: \[ 8 = \sqrt{693} \cdot \cos(\theta) \] Now, solve for \( \cos(\theta) \): \[ \cos(\theta) = \frac{8}{\sqrt{693}} \] Next, calculate the angle \( \theta \): \[ \theta = \cos^{-1}\left(\frac{8}{\sqrt{693}}\right) \] Using a calculator to find the angle in degrees: \[ \theta \approx \cos^{-1}\left(\frac{8}{\sqrt{693}}\right) \approx \cos^{-1}(0.303) \approx 72.3^\circ \] Thus, rounding to the nearest tenth, the angle between \( \mathbf{v} \) and \( \mathbf{w} \) is: \[ \theta \approx 72.3^\circ \]