Pregunta
upstudy study bank question image url

Part 2 of 2 \( y=597 x^{-1 / 3} \) for \( 30 \leq x \leq 75 \). What is the instantaneous rate of change of pulse rate for the following heights? (A) 40 -inches (B) 61 -inches beats per minute, as given approximately by What is the instantaneous rate of change of pulse rate for a 40 inch tall person? -1.45 beats per minute per inch (Round to the nearest hundredth as needed.) What is the instantaneous rate of change of pulse rate for a 61 inch tall person? \( \square \) beats per minute per inch (Round to the nearest hundredth as needed.)

Ask by Colon Cruz. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The instantaneous rate of change of pulse rate for a 40-inch tall person is approximately -1.45 beats per minute per inch. For a 61-inch tall person, it's approximately -0.83 beats per minute per inch.

Solución

To find the instantaneous rate of change of pulse rate for a 40-inch tall person, we need to find the derivative of the given function \( y = 597x^{-1/3} \) and then evaluate it at \( x = 40 \). Given function: \( y = 597x^{-1/3} \) To find the derivative of the function, we will use the power rule of differentiation, which states that if \( y = x^n \), then \( y' = nx^{n-1} \). Differentiating the given function: \[ y' = 597 \cdot \left(-\frac{1}{3}\right) \cdot x^{-1/3 - 1} \] \[ y' = -199 \cdot x^{-4/3} \] Now, we need to evaluate the derivative at \( x = 40 \) to find the instantaneous rate of change of pulse rate for a 40-inch tall person: \[ y' = -199 \cdot 40^{-4/3} \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(-199\times 40^{\frac{-4}{3}}\) - step1: Rewrite the fraction: \(-199\times 40^{-\frac{4}{3}}\) - step2: Evaluate the power: \(-199\times \frac{1}{40^{\frac{4}{3}}}\) - step3: Multiply: \(-\frac{199}{40^{\frac{4}{3}}}\) - step4: Simplify: \(-\frac{199}{80\sqrt[3]{5}}\) - step5: Multiply by the Conjugate: \(\frac{-199\sqrt[3]{5^{2}}}{80\sqrt[3]{5}\times \sqrt[3]{5^{2}}}\) - step6: Simplify: \(\frac{-199\sqrt[3]{25}}{80\sqrt[3]{5}\times \sqrt[3]{5^{2}}}\) - step7: Multiply the numbers: \(\frac{-199\sqrt[3]{25}}{400}\) - step8: Calculate: \(-\frac{199\sqrt[3]{25}}{400}\) The instantaneous rate of change of pulse rate for a 40-inch tall person is approximately -1.45 beats per minute per inch. Now, let's find the instantaneous rate of change of pulse rate for a 61-inch tall person by evaluating the derivative at \( x = 61 \): \[ y' = -199 \cdot 61^{-4/3} \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(-199\times 61^{\frac{-4}{3}}\) - step1: Rewrite the fraction: \(-199\times 61^{-\frac{4}{3}}\) - step2: Evaluate the power: \(-199\times \frac{1}{61^{\frac{4}{3}}}\) - step3: Multiply: \(-\frac{199}{61^{\frac{4}{3}}}\) - step4: Simplify: \(-\frac{199}{61\sqrt[3]{61}}\) - step5: Multiply by the Conjugate: \(\frac{-199\sqrt[3]{61^{2}}}{61\sqrt[3]{61}\times \sqrt[3]{61^{2}}}\) - step6: Simplify: \(\frac{-199\sqrt[3]{3721}}{61\sqrt[3]{61}\times \sqrt[3]{61^{2}}}\) - step7: Multiply the numbers: \(\frac{-199\sqrt[3]{3721}}{3721}\) - step8: Calculate: \(-\frac{199\sqrt[3]{3721}}{3721}\) The instantaneous rate of change of pulse rate for a 61-inch tall person is approximately -0.83 beats per minute per inch. Therefore, the answers are: (A) -1.45 beats per minute per inch (B) -0.83 beats per minute per inch

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the instantaneous rate of change of pulse rate for a height of 61 inches, we need to find the derivative of the function \( y = 597 x^{-1/3} \) and then evaluate it at \( x = 61 \). First, we differentiate \( y \): \[ \frac{dy}{dx} = 597 \cdot \left(-\frac{1}{3} x^{-4/3}\right) = -199 x^{-4/3} \] Next, we plug in \( x = 61 \): \[ \frac{dy}{dx}\bigg|_{x=61} = -199 \cdot 61^{-4/3} \] Now, calculating \( 61^{-4/3} \): \[ 61^{-4/3} = \frac{1}{(61^{1/3})^4} \approx \frac{1}{(3.936)^4} \approx \frac{1}{246.643} \approx 0.00405 \] Now substituting back: \[ \frac{dy}{dx}\bigg|_{x=61} \approx -199 \cdot 0.00405 \approx -0.80495 \] Rounding to the nearest hundredth, we get: \[ \frac{dy}{dx}\bigg|_{x=61} \approx -0.80 \text{ beats per minute per inch.} \] So, the instantaneous rate of change of pulse rate for a 61-inch tall person is approximately -0.80 beats per minute per inch.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad