Pregunta
upstudy study bank question image url

n official major league baseball has a mass of 0.14 kg . A pitcher throws a 40 \( / \mathrm{s} \) fastball which is hit by the batter straight back up the middle at a speed of \( 6 \mathrm{~m} / \mathrm{s} \).

Ask by Chan Edwards. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The baseball's momentum decreases by 4.76 kg m/s after being hit by the batter.

Solución

To solve this problem, we need to calculate the momentum of the baseball before and after it is hit by the batter. Given: - Mass of the baseball: \( m = 0.14 \, \text{kg} \) - Initial speed of the fastball: \( v_i = 40 \, \text{m/s} \) - Speed of the baseball after being hit: \( v_f = 6 \, \text{m/s} \) The momentum of an object is given by the formula: \[ p = m \times v \] Let's calculate the momentum of the baseball before and after it is hit by the batter. Calculate the value by following steps: - step0: Calculate: \(0.14\times 40\) - step1: Multiply the numbers: \(5.6\) The momentum of the baseball before it is hit by the batter is \( p_i = 5.6 \, \text{kg m/s} \). Now, let's calculate the momentum of the baseball after it is hit by the batter. Calculate the value by following steps: - step0: Calculate: \(0.14\times 6\) - step1: Multiply the numbers: \(0.84\) The momentum of the baseball after it is hit by the batter is \( p_f = 0.84 \, \text{kg m/s} \). Therefore, the change in momentum of the baseball after being hit by the batter is \( \Delta p = p_f - p_i = 0.84 \, \text{kg m/s} - 5.6 \, \text{kg m/s} = -4.76 \, \text{kg m/s} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The concept of momentum is super important in this scenario! When the pitcher throws the baseball, it's moving at a fast speed and has a certain momentum, which is the product of its mass and velocity. When the batter hits the ball, he transfers energy and changes its momentum. You can calculate this by considering the initial and final velocities of the ball, and using the formula for momentum (p = mv) to understand how the interaction between the bat and the ball works! If you're ever catching a baseball game, keep an eye on the physics happening on the field! Understanding the speed and force of the balls being pitched and hit gives you a whole new appreciation. Each throw, pitch, and hit is a dance of physics that can lead to incredible plays or monumental fails, and hey, who doesn’t love a good home run?

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad