dhe equation of the axis of symmetry of the following parabola algebraically. \[ y=-3 x^{2}+24 x-66 \] Answer Attempt 1 out of 2
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the axis of symmetry of the parabola given by the equation \( y = -3x^2 + 24x - 66 \), you can use the formula \( x = -\frac{b}{2a} \). Here, \( a = -3 \) and \( b = 24 \). Plugging in these values, we get: \[ x = -\frac{24}{2 \times -3} = -\frac{24}{-6} = 4. \] So, the axis of symmetry is the vertical line \( x = 4 \). To confirm, you can substitute \( x = 4 \) back into the equation to find the corresponding \( y \)-value. That will define the vertex of the parabola, showing that the axis of symmetry bisects it perfectly!