Y.p.e \( -\left\{\begin{array}{l}x+z=y \\ x-y=6\end{array}\right. \) \( \left\{\begin{array}{l}3 x+y=0 \\ -4 x+y=14\end{array}\right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When solving this system of equations, it's a good idea to first express one variable in terms of another. For example, from the equation \( x - y = 6 \), we can write \( y = x - 6 \). Substituting this into the other equations can make them easier to manage, so you can systematically reduce the complexity. One common mistake in solving systems is neglecting to check your solutions. After finding values for \( x \) and \( y \), plug them back into the original equations to ensure they satisfy all conditions. This can save you from assuming an incorrect solution or missing potential errors in calculations!