Pregunta
upstudy study bank question image url

Calculating standard scores 6 A set of scores has a mean of 100 and a standard deviation of 20 . Calculate standardised scores for each of the following test scores: \( \begin{array}{lllll}\text { a } 120 & \text { b } 140 & \text { c } 80 & \text { d } 100 & \text { e } 40\end{array} \)

Ask by Schofield Grant. in Australia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the standardized scores for each test score: - **a) 120**: 1.0 - **b) 140**: 2.0 - **c) 80**: -1.0 - **d) 100**: 0.0 - **e) 40**: -3.0

Solución

To calculate the standardized scores (also known as **z-scores**) for each test score, you can use the following formula: \[ z = \frac{{x - \mu}}{{\sigma}} \] where: - \( x \) = individual test score - \( \mu \) = mean of the scores - \( \sigma \) = standard deviation Given: - Mean (\( \mu \)) = 100 - Standard Deviation (\( \sigma \)) = 20 Let's calculate the z-scores for each test score: ### a) Test Score = 120 \[ z = \frac{{120 - 100}}{{20}} = \frac{{20}}{{20}} = **1.0** \] ### b) Test Score = 140 \[ z = \frac{{140 - 100}}{{20}} = \frac{{40}}{{20}} = **2.0** \] ### c) Test Score = 80 \[ z = \frac{{80 - 100}}{{20}} = \frac{{-20}}{{20}} = **-1.0** \] ### d) Test Score = 100 \[ z = \frac{{100 - 100}}{{20}} = \frac{{0}}{{20}} = **0.0** \] ### e) Test Score = 40 \[ z = \frac{{40 - 100}}{{20}} = \frac{{-60}}{{20}} = **-3.0** \] ### Summary of Standardized Scores: | Test Score (\( x \)) | Z-Score (\( z \)) | |----------------------|--------------------| | 120 | 1.0 | | 140 | 2.0 | | 80 | -1.0 | | 100 | 0.0 | | 40 | -3.0 | **Interpretation of Z-Scores:** - A **z-score** indicates how many standard deviations an element is from the mean. - Positive z-scores indicate scores **above** the mean. - Negative z-scores indicate scores **below** the mean. - A z-score of **0** indicates a score exactly at the mean. For example, a test score of **140** has a z-score of **2.0**, meaning it is **2 standard deviations above** the mean.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the standard scores (z-scores) for each test score, you can use the formula: \[ z = \frac{(X - \mu)}{\sigma} \] where \( X \) is the test score, \( \mu \) is the mean, and \( \sigma \) is the standard deviation. For the scores you provided: - Mean (\( \mu \)) = 100 - Standard Deviation (\( \sigma \)) = 20 Now let's calculate the z-scores: a) \( 120 \): \[ z = \frac{(120 - 100)}{20} = 1.0 \] b) \( 140 \): \[ z = \frac{(140 - 100)}{20} = 2.0 \] c) \( 80 \): \[ z = \frac{(80 - 100)}{20} = -1.0 \] d) \( 100 \): \[ z = \frac{(100 - 100)}{20} = 0.0 \] e) \( 40 \): \[ z = \frac{(40 - 100)}{20} = -3.0 \] So the standardised scores are: a) 1.0, b) 2.0, c) -1.0, d) 0.0, e) -3.0. Now that's how you calculate standard scores and see how far each score is from the average – like a little competition in a scoring game!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad