Given the below cumulative distribution function, find the following probabilities.
CDF:
\( F(x)=\left\{\begin{array}{ll}0 & \text { if } x<3 \\ 0.15 & \text { if } 3 \leq x<5 \\ 0.3 & \text { if } 5 \leq x<10 \\ 0.35 & \text { if } 10 \leq x<11 \\ 1 & \text { if } 11 \leq x\end{array}\right. \)
\( P(X=0)= \)
\( P(X \leq 5)= \)
\( P(X<10)=\square \)
\( P(10 \leq X \leq 11)=\square \)
\( P(310)= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let's go through each probability step by step using the provided cumulative distribution function (CDF).
1. **\( P(X=0) \)**: Since \( x < 3 \) has a CDF of 0, we conclude:
\[ P(X=0) = 0 \]
2. **\( P(X \leq 5) \)**: For \( 3 \leq x < 5 \) the CDF is 0.15, and at \( x=5 \) we have \( P(X \leq 5) = 0.3 \):
\[ P(X \leq 5) = 0.3 \]
3. **\( P(X<10) \)**: The CDF value right before \( x=10 \) (which is at \( 5 \leq x < 10 \)) is 0.3:
\[ P(X < 10) = 0.3 \]
4. **\( P(10 \leq X \leq 11) \)**: The value at \( x=10 \) is 0.35, and at \( x=11 \) it's 1. Thus:
\[ P(10 \leq X \leq 11) = P(X \leq 11) - P(X < 10) = 1 - 0.35 = 0.65 \]
5. **\( P(3