Pregunta
\( \int ( 5 s + 6 ) ^ { 2 } d s = \square \)
Ask by Conner Sullivan. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\int (5s + 6)^2 \, ds = \frac{(5s + 6)^3}{15} + C
\]
Solución
To evaluate the integral:
\[
\int (5s + 6)^2 \, ds
\]
**Step 1: Use Substitution**
Let \( u = 5s + 6 \). Then, the derivative of \( u \) with respect to \( s \) is:
\[
\frac{du}{ds} = 5 \quad \Rightarrow \quad ds = \frac{du}{5}
\]
**Step 2: Rewrite the Integral in Terms of \( u \)**
Substitute \( u \) and \( ds \) into the integral:
\[
\int u^2 \cdot \frac{du}{5} = \frac{1}{5} \int u^2 \, du
\]
**Step 3: Integrate**
\[
\frac{1}{5} \int u^2 \, du = \frac{1}{5} \cdot \frac{u^3}{3} + C = \frac{u^3}{15} + C
\]
**Step 4: Substitute Back \( u = 5s + 6 \)**
\[
\frac{(5s + 6)^3}{15} + C
\]
**Final Answer:**
\[
\int (5s + 6)^2 \, ds = \frac{(5s + 6)^3}{15} + C
\]
Where \( C \) is the constant of integration.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the integral \( \int (5s + 6)^2 \, ds \), we'll first expand the expression: \[ (5s + 6)^2 = 25s^2 + 60s + 36. \] Now, we can integrate each term separately: \[ \int (25s^2 + 60s + 36) \, ds = \frac{25}{3}s^3 + 30s^2 + 36s + C, \] where \( C \) is the constant of integration. Therefore, the final result is: \[ \int (5s + 6)^2 \, ds = \frac{25}{3}s^3 + 30s^2 + 36s + C. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium