Pregunta
upstudy study bank question image url

Determine if the function below has a horizontal or a slant asymptote, and explain why. \[ f(x)=\frac{-13 x-10 x^{2}+5}{-2 x-3} \] Answer Attempt 1 out of 2 The function has a \( \quad \vee \) asymptote because the degree of the numerator is \( \quad \vee \) the degree of the denominator. As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches \( \begin{array}{l}\text {. }\end{array} \)

Ask by Mccoy Mitchell. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function has a slant asymptote because the degree of the numerator is greater than the degree of the denominator. As \( x \) approaches infinity, \( y \) approaches \( 5x - 1 \).

Solución

To determine if the function \( f(x) = \frac{-13x - 10x^2 + 5}{-2x - 3} \) has a horizontal or slant asymptote, we need to compare the degrees of the numerator and the denominator. The degree of the numerator is 2 (highest power of \( x \) is \( x^2 \)), and the degree of the denominator is 1 (highest power of \( x \) is \( x \)). Since the degree of the numerator is greater than the degree of the denominator, the function has a slant asymptote. To find the slant asymptote, we can perform long division of the numerator by the denominator. Let's perform the long division to find the slant asymptote. Divide the polynomials by following steps: - step0: Using Long Division to Divide Polynomials: \(\left(-13x-10x^{2}+5\right)\div \left(-2x-3\right)\) - step1: Calculate: \(\left(5x-1\right)\text{ }\textrm{remainder}\text{ }2\) The long division gives us the quotient \( 5x - 1 \) and a remainder of 2. Therefore, the slant asymptote of the function \( f(x) = \frac{-13x - 10x^2 + 5}{-2x - 3} \) is \( y = 5x - 1 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the nature of the asymptote, we start with the degrees of the numerator and the denominator. The numerator \( -13x - 10x^2 + 5 \) has a degree of 2 (due to the \( -10x^2 \) term), while the denominator \( -2x - 3 \) has a degree of 1. Since the degree of the numerator is greater than the degree of the denominator by one, there is a slant asymptote. We can find this by performing polynomial long division. As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches the slant asymptote given by the quotient from the division, which will be a linear function of the form \( Ax + B \), where \( A \) and \( B \) are the coefficients obtained from the division. Keep your eyes on that long division magic!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad