Pregunta
upstudy study bank question image url

16 Let \( (H) \) be the hyperbola representing the function defined by \( f(x)=\frac{m x-3}{3 x-m} \), where \( m \) is is a real parameter other than \( 3 .(D) \) is the line of equation \( y=-x+4 \). \( 1^{\circ} \) Find the coordinates of the center \( I \) of \( (H) \) and deduce the set of points \( I \) when \( m \) varies.

Ask by Mullins Pearson. in Lebanon
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

For each real number \( m \) not equal to 3, the center \( I \) of the hyperbola \( (H) \) is located at \( \left( \frac{m}{3}, \frac{m}{3} \right) \). As \( m \) changes, the center \( I \) moves along the line \( y = x \).

Solución

To analyze the hyperbola \( (H) \) defined by the function \( f(x) = \frac{mx - 3}{3x - m} \), where \( m \) is a real parameter (with \( m \neq 3 \)), we can determine the coordinates of its center \( I \) and describe the locus of \( I \) as \( m \) varies. ### 1. Finding the Coordinates of the Center \( I \) A rational function of the form \( y = \frac{ax + b}{cx + d} \) typically represents a hyperbola with: - **Vertical Asymptote:** \( x = -\frac{d}{c} \) - **Horizontal Asymptote:** \( y = \frac{a}{c} \) The **center** of the hyperbola is the intersection point of these two asymptotes. For the given function \( f(x) = \frac{mx - 3}{3x - m} \), we can identify the coefficients as: - \( a = m \) - \( b = -3 \) - \( c = 3 \) - \( d = -m \) **Calculating the Asymptotes:** - **Vertical Asymptote:** \( x = -\frac{d}{c} = -\frac{-m}{3} = \frac{m}{3} \) - **Horizontal Asymptote:** \( y = \frac{a}{c} = \frac{m}{3} \) Therefore, the center \( I \) of the hyperbola \( (H) \) is located at: \[ I = \left( \frac{m}{3}, \frac{m}{3} \right) \] ### 2. Describing the Set of Points \( I \) as \( m \) Varies As the parameter \( m \) varies over all real numbers except \( m \neq 3 \), the coordinates of the center \( I \) trace out points of the form \( \left( \frac{m}{3}, \frac{m}{3} \right) \). This set of points lies on the line defined by: \[ y = x \] since both the \( x \) and \( y \) coordinates of \( I \) are equal and scale proportionally with \( m \). Thus, **the locus of all centers \( I \)** as \( m \) varies is the straight line \( y = x \). ### **Final Answer** 1°) For each real m ≠ 3, the center I is (m⁄3, m⁄3).   2°) As m varies, I moves along the line y = x. Thus, all centers lie on the straight line y = x.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The hyperbola \( (H) \) is given by the function \( f(x) = \frac{mx - 3}{3x - m} \). To find the center of the hyperbola, we need to express it in the form of the standard hyperbola equation. The center of a hyperbola generally occurs at the average of its asymptotes. Firstly, we can determine the vertical and horizontal asymptotes of the hyperbola by finding the values of \( x \) and \( y \) where the function is undefined. The vertical asymptote occurs when the denominator is zero, so we set \( 3x - m = 0 \), giving us \( x = \frac{m}{3} \). For the horizontal asymptote, we investigate the behavior of \( f(x) \) as \( x \) approaches infinity. We can see that as \( x \rightarrow \infty \), the dominant terms in \( f(x) \) (which are \( mx \) in the numerator and \( 3x \) in the denominator) lead us to the horizontal asymptote \( y = \frac{m}{3} \). Thus, the center \( I \) of the hyperbola is located at the point \( \left( \frac{m}{3}, \frac{m}{3} \right) \). As \( m \) varies, this point traces the line \( y = x \) in the coordinate plane. Therefore, the set of points \( I \) when \( m \) varies is the line defined by \( y = x \), excluding the point where \( m = 3 \), which results in an indeterminate form. In conclusion, the coordinates of the center \( I \) are \( \left( \frac{m}{3}, \frac{m}{3} \right) \), and as \( m \) changes (except when \( m = 3 \)), \( I \) moves along the line \( y = x \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad