Pregunta
Find the exact value of the expression. Do not use a calculator. \[ \frac{\sin \left(44^{\circ}\right)}{\cos \left(46^{\circ}\right)} \] \( \frac{\sin \left(44^{\circ}\right)}{\cos \left(46^{\circ}\right)}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Type an exact answer, using radicals as needed.)
Ask by Martin Rodriquez. in the United States
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\frac{\sin \left(44^{\circ}\right)}{\cos \left(46^{\circ}\right)} = 1
\]
Solución
We are given the expression:
\[
\frac{\sin \left(44^{\circ}\right)}{\cos \left(46^{\circ}\right)}
\]
Notice that \(44^{\circ}\) and \(46^{\circ}\) are complementary angles because:
\[
44^{\circ} + 46^{\circ} = 90^{\circ}
\]
Using the cofunction identity, we know that:
\[
\sin(\theta) = \cos(90^{\circ} - \theta)
\]
Applying this to our angles:
\[
\sin(44^{\circ}) = \cos(46^{\circ})
\]
Therefore, the expression simplifies to:
\[
\frac{\sin \left(44^{\circ}\right)}{\cos \left(46^{\circ}\right)} = \frac{\cos \left(46^{\circ}\right)}{\cos \left(46^{\circ}\right)} = 1
\]
**Answer:** \(1\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To simplify the expression \( \frac{\sin(44^{\circ})}{\cos(46^{\circ})} \), we can use the identity that relates sine and cosine: \[ \cos(46^{\circ}) = \sin(90^{\circ} - 46^{\circ}) = \sin(44^{\circ}). \] Now substituting this back into the original expression gives us: \[ \frac{\sin(44^{\circ})}{\cos(46^{\circ})} = \frac{\sin(44^{\circ})}{\sin(44^{\circ})} = 1. \] Thus, the exact value of the expression is: \[ 1. \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium