Pregunta
upstudy study bank question image url

\( 1.1 .4 \quad \sqrt{5-x}=x+1 \) Solve for \( x \) and \( y \) simultaneously if: \( x+4=2 y \) and \( y^{2}-x y+21=0 \)

Ask by Huang Weber. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are no real solutions for \( x \) and \( y \) in the given system of equations.

Solución

To solve the system of equations given, we need to find the values of \( x \) and \( y \) that satisfy all the equations simultaneously. Given equations: 1. \( \sqrt{5-x} = x + 1 \) 2. \( x + 4 = 2y \) 3. \( y^2 - xy + 21 = 0 \) Let's solve these equations step by step: 1. Solve the first equation for \( x \): \( \sqrt{5-x} = x + 1 \) Squaring both sides: \( 5 - x = (x + 1)^2 \) Expanding the right side: \( 5 - x = x^2 + 2x + 1 \) Rearranging the equation: \( x^2 + 3x + 6 = 0 \) 2. Solve the second equation for \( y \): \( x + 4 = 2y \) Dividing both sides by 2: \( y = \frac{x + 4}{2} \) 3. Substitute the expression for \( y \) from the second equation into the third equation: \( y^2 - xy + 21 = 0 \) Substitute \( y = \frac{x + 4}{2} \): \( \left(\frac{x + 4}{2}\right)^2 - x\left(\frac{x + 4}{2}\right) + 21 = 0 \) Now, we have a quadratic equation in terms of \( x \). Let's solve it. Solve the equation(The complex numbers system) by following steps: - step0: Solve using the quadratic formula in the complex numbers system: \(x^{2}+3x+6=0\) - step1: Solve using the quadratic formula: \(x=\frac{-3\pm \sqrt{3^{2}-4\times 6}}{2}\) - step2: Simplify the expression: \(x=\frac{-3\pm \sqrt{-15}}{2}\) - step3: Simplify the expression: \(x=\frac{-3\pm \sqrt{15}\times i}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{-3+\sqrt{15}\times i}{2}\\&x=\frac{-3-\sqrt{15}\times i}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=-\frac{3}{2}+\frac{\sqrt{15}}{2}i\\&x=\frac{-3-\sqrt{15}\times i}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=-\frac{3}{2}+\frac{\sqrt{15}}{2}i\\&x=-\frac{3}{2}-\frac{\sqrt{15}}{2}i\end{align}\) - step7: Rewrite: \(x_{1}=-\frac{3}{2}-\frac{\sqrt{15}}{2}i,x_{2}=-\frac{3}{2}+\frac{\sqrt{15}}{2}i\) - step8: Remove the complex number(s): \(\textrm{No real solution}\) The quadratic equation \( x^2 + 3x + 6 = 0 \) does not have any real solutions. This means that there are no real values of \( x \) that satisfy the first equation. Therefore, there are no real solutions for the system of equations given.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's solve the first equation \( \sqrt{5 - x} = x + 1 \) by squaring both sides: 1. Squaring both sides gives: \[ 5 - x = (x + 1)^2 \] Expanding the right side: \[ 5 - x = x^2 + 2x + 1 \] Rearranging terms: \[ x^2 + 3x - 4 = 0 \] 2. Now, we can factor it: \[ (x + 4)(x - 1) = 0 \] So, \( x = -4 \) or \( x = 1 \). 3. Next, we need to check both solutions in the original equation: - For \( x = 1 \): \[ \sqrt{5 - 1} = 1 + 1 \implies 2 = 2 \, \text{(valid)} \] - For \( x = -4 \): \[ \sqrt{5 - (-4)} = -4 + 1 \implies 3 = -3 \, \text{(invalid)} \] Thus, the valid solution for \( x \) is \( x = 1 \). Now using \( x = 1 \) in the second set of equations: 4. From the equation \( x + 4 = 2y \): \[ 1 + 4 = 2y \implies 5 = 2y \implies y = \frac{5}{2} \] 5. Now, let's verify if this \( y \) satisfies \( y^2 - xy + 21 = 0 \): \[ \left(\frac{5}{2}\right)^2 - 1 \cdot \frac{5}{2} + 21 = \frac{25}{4} - \frac{5}{2} + 21 \] Converting \( -\frac{5}{2} \) to fourths: \[ -\frac{5}{2} = -\frac{10}{4} \] Thus, \[ \frac{25}{4} - \frac{10}{4} + \frac{84}{4} = \frac{25 - 10 + 84}{4} = \frac{99}{4} \neq 0 \, \text{(not valid)} \] Since it does not satisfy this equation, we need to analyze our valid \( x \) to find \( y \): Solving \( y^2 - xy + 21 = 0 \) with \( x = 1 \): \[ y^2 - y + 21 = 0 \] Using the quadratic formula: \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 21}}{2 \cdot 1} = \frac{1 \pm \sqrt{1 - 84}}{2} = \frac{1 \pm \sqrt{-83}}{2} \] Thus, \( x = 1 \) and \( y = \frac{1 \pm i\sqrt{83}}{2} \) (complex solutions). In summary, the solutions are: \[ (x,y) = \left(1, \frac{1 \pm i\sqrt{83}}{2}\right) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad