Pregunta
\( \frac{\text { Simplify: }}{\sin ^{2} 108+\sin ^{2} 18} \)
Ask by Rose Kirk. in South Africa
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression simplifies to 1.
Solución
To simplify the expression:
\[
\sin^2 108^\circ + \sin^2 18^\circ
\]
we can use trigonometric identities and symmetry properties.
### Step 1: Utilize Angle Relationships
Notice that:
\[
\sin 108^\circ = \sin (180^\circ - 72^\circ) = \sin 72^\circ
\]
So, the expression becomes:
\[
\sin^2 72^\circ + \sin^2 18^\circ
\]
### Step 2: Apply the Pythagorean Identity for Sine Squared
Recall the identity:
\[
\sin^2 A + \sin^2 B = 1 - \frac{\cos(2A) + \cos(2B)}{2}
\]
Applying this to our expression:
\[
\sin^2 72^\circ + \sin^2 18^\circ = 1 - \frac{\cos(144^\circ) + \cos(36^\circ)}{2}
\]
### Step 3: Evaluate the Cosines
We know that:
\[
\cos 144^\circ = \cos (180^\circ - 36^\circ) = -\cos 36^\circ
\]
Substituting back:
\[
\cos 144^\circ + \cos 36^\circ = -\cos 36^\circ + \cos 36^\circ = 0
\]
So, the expression simplifies to:
\[
\sin^2 72^\circ + \sin^2 18^\circ = 1 - \frac{0}{2} = 1
\]
### Conclusion
The simplified form of the expression is:
\[
\boxed{1}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To simplify \( \sin^2 108^\circ + \sin^2 18^\circ \), we can use the identity \( \sin(90^\circ + x) = \cos x \). Hence, \( \sin 108^\circ = \cos 18^\circ \). Now, \( \sin^2 108^\circ = \cos^2 18^\circ \). Therefore, we have: \[ \sin^2 108^\circ + \sin^2 18^\circ = \cos^2 18^\circ + \sin^2 18^\circ = 1. \] Thus, \( \frac{1}{\sin^2 108^\circ + \sin^2 18^\circ} = \frac{1}{1} = 1 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium