Pregunta
upstudy study bank question image url

A manufacturer produces cans of soup. To pass inspection and go on to distribution, a can must have 6 ounces of soup, plus or minus 0.5 ounces. If the can doesn't meet this requirement, it fails and is sent back. (a) Let \( x \) represent the amount (in ounces) of soup in a can. Write an absolute value inequality that can be used to find the unacceptable amounts of soup in a can. These are the amounts where the soup can will fail the inspection and get sent back. \( \square \) - \( \square \) \( \leq \) \( \square \) \( \square \) \( + \) \( \square \) \( > \) \( \square \) \( \square \) - \( \square \) \( \square \) \( \square \) \( + \) \( \square \) \( \leq \) \( \square \) (b) Solve the absolute value inequality from part (a). \( \square \) and \( \square \) \( \square \) < \( \square>\square \) \( \square \) or \( \square \) \( \leq \square \) \( \geq \square \)

Ask by Potter Paul. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(a)** \[ |\, x - 6\,| \, > \, 0.5 \] **(b)** \[ x < 5.5 \quad \text{or} \quad x > 6.5 \]

Solución

**Problem (a):** To determine the unacceptable amounts of soup in a can, we need to identify values of \( x \) (the amount of soup in ounces) that fall **outside** the acceptable range. The acceptable range is from \( 6 - 0.5 = 5.5 \) ounces to \( 6 + 0.5 = 6.5 \) ounces. An absolute value inequality captures the distance of \( x \) from the target value \( 6 \) ounces. Specifically, for unacceptable amounts, this distance should be **greater than** \( 0.5 \) ounces. The absolute value inequality representing the unacceptable amounts is: \[ |\, x - 6\,| \, > \, 0.5 \] --- **Problem (b):** To solve the inequality \( |\, x - 6\,| > 0.5 \), we consider the definition of absolute value inequalities: \[ |\, x - a\,| > b \quad \text{is equivalent to} \quad x - a > b \quad \text{or} \quad x - a < -b \] Applying this to our inequality: \[ |\, x - 6\,| > 0.5 \quad \Rightarrow \quad x - 6 > 0.5 \quad \text{or} \quad x - 6 < -0.5 \] Solving each part: 1. \( x - 6 > 0.5 \) \[ x > 6.5 \] 2. \( x - 6 < -0.5 \) \[ x < 5.5 \] **Final Solution:** \[ x < 5.5 \quad \text{or} \quad x > 6.5 \] This means that any can containing **less than 5.5 ounces** or **more than 6.5 ounces** of soup will fail inspection and be sent back. **Summary of Answers:** **(a)** \[ |\, x - 6\,| \, > \, 0.5 \] **(b)** \[ x < 5.5 \quad \text{or} \quad x > 6.5 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The absolute value inequality that can be used to find the unacceptable amounts of soup in a can is: \[ |x - 6| > 0.5 \] This indicates that if the amount of soup \( x \) deviates more than 0.5 ounces from the ideal 6 ounces, the can will fail inspection. That means acceptable values of \( x \) must be within the range of 5.5 to 6.5 ounces. To solve this inequality, we break it into two cases: 1. \( x - 6 > 0.5 \) leads to \( x > 6.5 \) 2. \( x - 6 < -0.5 \) leads to \( x < 5.5 \) Thus, the unacceptable amounts of soup in a can are \( x > 6.5 \) or \( x < 5.5 \). Now, let’s be a bit of a history buff! The concept of absolute value inequalities has roots in mathematics developed over centuries. The absolute value, first formalized in the 19th century, is crucial for describing distances and deviations without concern for direction. It’s essential for real-world applications, like manufacturing, where precision is key in any production line! In real-world scenarios, these inequalities help manufacturers comply with quality standards. Like a papa bear's porridge, a soup can must be "just right"! If too much or too little soup makes it to the shelf, consumers might not be satisfied. This diligence ensures that only the perfectly filled cans are sent out for enjoyment. Always a win-win situation for both the maker and the eater!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad