Pregunta
upstudy study bank question image url

The following rational equation has denominators that contain variables. For this equation a. Write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. \( \frac{4}{x}=\frac{7}{4 x}+3 \) a. What is/are the value or values of the variable that make(s) the denominators zero? \( x=\square \) (Simplify your answer. Use a comma to separate answers as needed.) b. Solve the equation. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \{\square\} \). (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. The solution set is \( \{x \mid x \) is a real number \( \} \). C. The solution set is \( \varnothing \).

Ask by Li Daniel. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a.** \( x = 0 \) **b.** The solution set is \( \left\{ \dfrac{3}{4} \right\} \).

Solución

Let's solve the rational equation step by step. ### Given Equation: \[ \frac{4}{x} = \frac{7}{4x} + 3 \] ### a. Finding Restrictions on \( x \): The denominators in the equation are \( x \) and \( 4x \). For the denominators to not be zero: \[ x \neq 0 \quad \text{and} \quad 4x \neq 0 \] Both conditions simplify to: \[ x \neq 0 \] So, the restriction is: \[ x = 0 \] **Answer for part a:** \[ x = 0 \] ### b. Solving the Equation: With the restriction \( x \neq 0 \), let's solve the equation: \[ \frac{4}{x} = \frac{7}{4x} + 3 \] **Step 1: Eliminate the denominators by multiplying both sides by \( 4x \):** \[ 4x \cdot \frac{4}{x} = 4x \cdot \frac{7}{4x} + 4x \cdot 3 \] Simplifying: \[ 16 = 7 + 12x \] **Step 2: Solve for \( x \):** \[ 16 - 7 = 12x \] \[ 9 = 12x \] \[ x = \frac{9}{12} = \frac{3}{4} \] **Final Solution:** The solution is \( x = \frac{3}{4} \), which satisfies the restriction \( x \neq 0 \). **Answer for part b:** **A.** The solution set is \( \left\{ \dfrac{3}{4} \right\} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the values of the variable that make the denominators zero, we set each denominator equal to zero. For \(\frac{4}{x}\), the denominator is \(x\), so setting \(x = 0\) will make this expression undefined. Also, for \(\frac{7}{4x}\), the denominator \(4x\) also turns zero when \(x = 0\). Therefore, the restriction on the variable is \(x = 0\). Now, moving on to solve the equation \(\frac{4}{x} = \frac{7}{4x} + 3\). First, we will eliminate the fractions by multiplying every term by \(4x\) (keeping in mind that \(x \neq 0\)): \[ 4 \cdot 4 = 7 + 12x \] This simplifies to \(16 = 7 + 12x\). By rearranging the equation, we have: \[ 12x = 16 - 7 \] \[ 12x = 9 \] Solving for \(x\): \[ x = \frac{9}{12} = \frac{3}{4} \] Thus, for part b, the solution set is \( \{ \frac{3}{4} \} \). So the final answers are: a. \( x = 0 \) b. A. The solution set is \( \{\frac{3}{4}\} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad