Pregunta
Which is equivalent to \( 80^{\frac{1}{4} x} \) ? \( \left(\frac{80}{4}\right)^{x} \) \( \sqrt[4]{80} x \) \( \sqrt[x]{80} \) \( \left(\frac{80}{x}\right)^{4} \)
Ask by Garrett Carrillo. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
None of the given options are equivalent to \( 80^{\frac{1}{4} x} \).
Solución
To determine which expression is equivalent to \( 80^{\frac{1}{4} x} \), let's analyze each option step by step.
### Given Expression:
\[ 80^{\frac{1}{4} x} \]
This can be rewritten using the properties of exponents:
\[ 80^{\frac{x}{4}} = \left(80^{\frac{1}{4}}\right)^x = \left(\sqrt[4]{80}\right)^x \]
### Evaluating the Options:
1. **\( \left(\frac{80}{4}\right)^{x} \)**
\[ \left(\frac{80}{4}\right)^x = 20^x \]
- **Comparison:** \( 80^{\frac{x}{4}} \) vs. \( 20^x \)
- These are **not** equivalent because \( 80^{\frac{x}{4}} \) is not equal to \( 20^x \) for general \( x \).
2. **\( \sqrt[4]{80} \times x \)**
\[ \sqrt[4]{80} \times x = 80^{\frac{1}{4}} \times x \]
- **Comparison:** \( 80^{\frac{x}{4}} \) vs. \( 80^{\frac{1}{4}} \times x \)
- These are **not** equivalent because one involves an exponential function of \( x \), while the other is a linear function of \( x \).
3. **\( \sqrt[x]{80} \)**
\[ \sqrt[x]{80} = 80^{\frac{1}{x}} \]
- **Comparison:** \( 80^{\frac{x}{4}} \) vs. \( 80^{\frac{1}{x}} \)
- These are **not** equivalent unless \( x = \frac{1}{4} \), which isn’t generally true.
4. **\( \left(\frac{80}{x}\right)^{4} \)**
\[ \left(\frac{80}{x}\right)^4 = \frac{80^4}{x^4} \]
- **Comparison:** \( 80^{\frac{x}{4}} \) vs. \( \frac{80^4}{x^4} \)
- These are **not** equivalent for general \( x \).
### Correct Equivalent Expression:
None of the provided options exactly match the equivalent expression \( 80^{\frac{x}{4}} = \left(\sqrt[4]{80}\right)^x \). However, if we were to adjust **Option 2** to include the exponent properly, it would become equivalent:
- **Adjusted Option 2:**
\[ \left(\sqrt[4]{80}\right)^x \]
This matches our derived equivalent expression. It seems there might have been a slight misrepresentation in **Option 2**, where the exponent was intended but omitted.
### Conclusion:
**None of the given options exactly match \( 80^{\frac{1}{4} x} \).** The closest equivalent expression would be \( \left(\sqrt[4]{80}\right)^x \), which isn't precisely listed among the options provided.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve for what is equivalent to \( 80^{\frac{1}{4} x} \), we can rewrite the expression using the properties of exponents. We can transform \( 80^{\frac{1}{4} x} \) to \( (80^{\frac{1}{4}})^{x} \), simplifying it to \( \sqrt[4]{80}^{x} \). This shows that none of the given options are equivalent to the transformed equation. Also, recognizing that exponent rules state \( a^{m \cdot n} = (a^{m})^{n} \) can help you in similar types of problems. Ensure to keep track of base and exponent manipulations for future reference!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium