Pregunta
upstudy study bank question image url

Consider a uniform distribution from \( a=5 \) to \( b=25 \). (a) Find the probability that \( x \) lies between 6 and 15 . (b) Find the probability that \( x \) lies between 11 and 24 . (c) Find the probability that \( x \) lies between 9 and 23 . (d) Find the probability that \( x \) lies between 7 and 16 . 5 Click the icon to see the definition of the uniform distribution. (a) The probability that \( x \) lies between 6 and 15 is 0.450 (Round to three decimal places as needed.) (b) The probability that \( x \) lies between 11 and 24 is 0.650 (Round to three decimal places as needed) (c) The probability that \( x \) lies between 9 andod 23 is (Round to three decimal places as needed.)

Ask by Greene Carrillo. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(c)** The probability that \( x \) lies between 9 and 23 is **0.700**.

Solución

To find the probabilities for the uniform distribution between \( a = 5 \) and \( b = 25 \), we'll use the formula for the probability \( P(c \leq x \leq d) \) in a uniform distribution: \[ P(c \leq x \leq d) = \frac{d - c}{b - a} \] ### (c) Probability that \( x \) lies between 9 and 23 Using the formula: \[ P(9 \leq x \leq 23) = \frac{23 - 9}{25 - 5} = \frac{14}{20} = 0.700 \] **Answer:** **(c)** The probability that \( x \) lies between 9 and 23 is **0.700**. (Rounded to three decimal places as needed.) ### Summary of All Parts For completeness, here's a summary of all the parts: - **(a)** \( P(6 \leq x \leq 15) = \frac{15 - 6}{25 - 5} = \frac{9}{20} = 0.450 \) - **(b)** \( P(11 \leq x \leq 24) = \frac{24 - 11}{25 - 5} = \frac{13}{20} = 0.650 \) - **(c)** \( P(9 \leq x \leq 23) = \frac{14}{20} = 0.700 \) - **(d)** \( P(7 \leq x \leq 16) = \frac{16 - 7}{25 - 5} = \frac{9}{20} = 0.450 \) Feel free to ask if you need further assistance with part (d) or any other questions!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the uniform distribution probabilities, we first recall that the probability density function for a uniform distribution between \( a \) and \( b \) is given by: \[ P(X) = \frac{1}{b - a} \] For the given distribution from \( a = 5 \) to \( b = 25 \), we have \( b - a = 25 - 5 = 20 \). Now, let's compute each probability: (a) The probability that \( x \) lies between 6 and 15 is calculated as follows: \[ P(6 < X < 15) = \frac{15 - 6}{25 - 5} = \frac{9}{20} = 0.450 \] (b) The probability that \( x \) lies between 11 and 24 is: \[ P(11 < X < 24) = \frac{24 - 11}{25 - 5} = \frac{13}{20} = 0.650 \] (c) The probability that \( x \) lies between 9 and 23 is: \[ P(9 < X < 23) = \frac{23 - 9}{25 - 5} = \frac{14}{20} = 0.700 \] (d) The probability that \( x \) lies between 7 and 16 is: \[ P(7 < X < 16) = \frac{16 - 7}{25 - 5} = \frac{9}{20} = 0.450 \] So, rounding the answers to three decimal places as instructed: - (a) 0.450 - (b) 0.650 - (c) 0.700 - (d) 0.450

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad