Pregunta
upstudy study bank question image url

Select the correct answer from each drop-down menu. Consider this product. \( \frac{x^{2}-3 x-10}{x^{2}-6 x+5} \cdot \frac{x-2}{x-5} \) The simplest form of this product has a numerator of The expression has an excluded value of \( x= \) Reset

Ask by Collins Pierce. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplest form of the product has a numerator of \( x^{2} - 4 \), and the expression has excluded values at \( x = 1 \) and \( x = 5 \).

Solución

To simplify the given expression and identify the excluded values, follow these steps: ### Given Expression: \[ \frac{x^{2}-3x-10}{x^{2}-6x+5} \cdot \frac{x-2}{x-5} \] ### Step 1: Factor the Numerators and Denominators 1. **Factor \( x^{2}-3x-10 \):** \[ x^{2}-3x-10 = (x - 5)(x + 2) \] 2. **Factor \( x^{2}-6x+5 \):** \[ x^{2}-6x+5 = (x - 1)(x - 5) \] ### Step 2: Rewrite the Expression with Factored Forms \[ \frac{(x - 5)(x + 2)}{(x - 1)(x - 5)} \cdot \frac{x - 2}{x - 5} \] ### Step 3: Cancel Common Factors - **Cancel \( (x - 5) \) from the first fraction:** \[ \frac{(x + 2)}{(x - 1)} \cdot \frac{x - 2}{x - 5} \] - **No further cancellation is possible.** ### Step 4: Simplify the Numerator - Multiply the numerators: \[ (x + 2)(x - 2) = x^{2} - 4 \] ### Simplified Expression: \[ \frac{x^{2} - 4}{(x - 1)(x - 5)} \] ### Excluded Values: Excluded values are the values of \( x \) that make any denominator zero in the original expression. These are: - From \( x^{2}-6x+5 \): \( x = 1 \) and \( x = 5 \) - From \( x - 5 \): \( x = 5 \) **Thus, the excluded values are \( x = 1 \) and \( x = 5 \).** ### **Final Answers:** - **Numerator of the Simplest Form:** \( x^{2} - 4 \) - **Excluded Values:** \( x = 1 \) and \( x = 5 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the product \( \frac{x^{2}-3 x-10}{x^{2}-6 x+5} \cdot \frac{x-2}{x-5} \), we start with factoring both the numerator and denominator of the first fraction. The numerator \( x^2 - 3x - 10 \) factors to \( (x-5)(x+2) \), and the denominator \( x^2 - 6x + 5 \) factors to \( (x-5)(x-1) \). The complete expression then becomes: \[ \frac{(x-5)(x+2)}{(x-5)(x-1)} \cdot \frac{x-2}{x-5} \] Next, we can cancel \( (x-5) \) from the numerator and denominator (noting that \( x \neq 5 \) to avoid division by zero). The simplified version still retains two \( (x-5) \) terms to consider: \[ \frac{(x+2)(x-2)}{(x-1)} \] After multiplying out the numerator, we find: \[ = \frac{x^2 - 4}{x-1} \] Thus, the simplest form of this product has a numerator of \( x^2 - 4 \). As for the excluded values, the original expression has \( x = 5 \) from the denominator and a value from \( x-1 = 0 \), so we also have \( x = 1 \) as an excluded value. Thus, one of the excluded values of \( x \) is 5, and the simplified version has \( \text{x} \text{ values of: } 1 \text{ and } 5 \text{ that cannot be included.} \) So, the answers are: The simplest form of this product has a numerator of \( x^2 - 4 \). The expression has an excluded value of \( x = 5 \) or \( x = 1\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad