Pregunta
upstudy study bank question image url

Evaluate \( \int^{4} \frac{1}{x^{2}+2 x+3} d x \)

Ask by Stuart Frank. in India
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral evaluates to \( \frac{1}{\sqrt{2}} \left( \arctan\left(\frac{5}{\sqrt{2}}\right) - \arctan\left(\frac{1}{\sqrt{2}}\right) \right) \).

Solución

Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int_{0}^{4} \frac{1}{x^{2}+2x+3} dx\) - step1: Evaluate the integral: \(\int \frac{1}{x^{2}+2x+3} dx\) - step2: Rewrite the expression: \(\int \frac{1}{2+\left(x+1\right)^{2}} dx\) - step3: Use the substitution \(dx=1 dt\) to transform the integral\(:\) \(\int \frac{1}{2+\left(x+1\right)^{2}}\times 1 dt\) - step4: Simplify: \(\int \frac{1}{2+\left(x+1\right)^{2}} dt\) - step5: Use the substitution \(t=x+1\) to transform the integral\(:\) \(\int \frac{1}{2+t^{2}} dt\) - step6: Evaluate the integral: \(\frac{1}{\sqrt{2}}\times \arctan\left(\frac{t}{\sqrt{2}}\right)\) - step7: Substitute back: \(\frac{1}{\sqrt{2}}\times \arctan\left(\frac{x+1}{\sqrt{2}}\right)\) - step8: Simplify: \(\frac{\sqrt{2}}{2}\arctan\left(\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}\right)\) - step9: Return the limits: \(\left(\frac{\sqrt{2}}{2}\arctan\left(\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}\right)\right)\bigg |_{0}^{4}\) - step10: Calculate the value: \(\frac{\sqrt{2}\times \arctan\left(2\sqrt{2}+\frac{\sqrt{2}}{2}\right)-\sqrt{2}\times \arctan\left(\frac{\sqrt{2}}{2}\right)}{2}\) To evaluate the integral \[ \int^{4} \frac{1}{x^{2}+2 x+3} d x, \] we first need to simplify the integrand. The expression in the denominator can be rewritten by completing the square: \[ x^{2} + 2x + 3 = (x+1)^{2} + 2. \] Now, we can rewrite the integral as: \[ \int^{4} \frac{1}{(x+1)^{2} + 2} d x. \] Next, we can use the substitution \( u = x + 1 \), which gives \( du = dx \). The limits of integration change accordingly: when \( x = 0 \), \( u = 1 \) and when \( x = 4 \), \( u = 5 \). Thus, the integral becomes: \[ \int_{1}^{5} \frac{1}{u^{2} + 2} du. \] The integral \[ \int \frac{1}{u^{2} + a^{2}} du = \frac{1}{a} \arctan\left(\frac{u}{a}\right) + C, \] where \( a = \sqrt{2} \) in our case. Therefore, we have: \[ \int \frac{1}{u^{2} + 2} du = \frac{1}{\sqrt{2}} \arctan\left(\frac{u}{\sqrt{2}}\right) + C. \] Now we can evaluate the definite integral: \[ \left[ \frac{1}{\sqrt{2}} \arctan\left(\frac{u}{\sqrt{2}}\right) \right]_{1}^{5}. \] Calculating this gives: \[ \frac{1}{\sqrt{2}} \left( \arctan\left(\frac{5}{\sqrt{2}}\right) - \arctan\left(\frac{1}{\sqrt{2}}\right) \right). \] Thus, the final result for the integral is: \[ \frac{1}{\sqrt{2}} \left( \arctan\left(\frac{5}{\sqrt{2}}\right) - \arctan\left(\frac{1}{\sqrt{2}}\right) \right). \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To evaluate the integral \( \int^{4} \frac{1}{x^{2}+2 x+3} d x \), we first need to simplify the integrand. The quadratic expression in the denominator can be rewritten to complete the square: \[ x^2 + 2x + 3 = (x + 1)^2 + 2 \] Now our integral becomes: \[ \int \frac{1}{(x + 1)^2 + 2} \, dx \] Next, we can use a substitution to make the integral easier to solve. Let: \[ u = x + 1 \implies du = dx \] When \( x = 0 \), \( u = 1 \), and when \( x = 4 \), \( u = 5 \). Therefore, the limits of integration change accordingly. The integral now looks like: \[ \int_{1}^{5} \frac{1}{u^2 + 2} \, du \] We can factor out the constant in the denominator: \[ = \int_{1}^{5} \frac{1}{2} \cdot \frac{1}{\frac{u^2}{2} + 1} \, du \] This can be recognized as a standard integral form. Recall that: \[ \int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C \] In our case, \( a^2 = 2 \), so \( a = \sqrt{2} \). Thus our integral becomes: \[ = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{u}{\sqrt{2}}\right) \bigg|_{1}^{5} \] Calculating it gives: \[ = \frac{1}{2\sqrt{2}} \left[ \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \right] \] Now we can evaluate at the bounds: - \( \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \) - \( \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) = \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) \) is left as is. Hence the final result is: \[ \int^{4} \frac{1}{x^{2}+2 x+3} d x = \frac{1}{2\sqrt{2}} \left( \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) - \frac{\pi}{4} \right) \] This is the evaluated integral.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad