Evaluate \( \int^{4} \frac{1}{x^{2}+2 x+3} d x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To evaluate the integral \( \int^{4} \frac{1}{x^{2}+2 x+3} d x \), we first need to simplify the integrand. The quadratic expression in the denominator can be rewritten to complete the square: \[ x^2 + 2x + 3 = (x + 1)^2 + 2 \] Now our integral becomes: \[ \int \frac{1}{(x + 1)^2 + 2} \, dx \] Next, we can use a substitution to make the integral easier to solve. Let: \[ u = x + 1 \implies du = dx \] When \( x = 0 \), \( u = 1 \), and when \( x = 4 \), \( u = 5 \). Therefore, the limits of integration change accordingly. The integral now looks like: \[ \int_{1}^{5} \frac{1}{u^2 + 2} \, du \] We can factor out the constant in the denominator: \[ = \int_{1}^{5} \frac{1}{2} \cdot \frac{1}{\frac{u^2}{2} + 1} \, du \] This can be recognized as a standard integral form. Recall that: \[ \int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C \] In our case, \( a^2 = 2 \), so \( a = \sqrt{2} \). Thus our integral becomes: \[ = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{u}{\sqrt{2}}\right) \bigg|_{1}^{5} \] Calculating it gives: \[ = \frac{1}{2\sqrt{2}} \left[ \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \right] \] Now we can evaluate at the bounds: - \( \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \) - \( \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) = \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) \) is left as is. Hence the final result is: \[ \int^{4} \frac{1}{x^{2}+2 x+3} d x = \frac{1}{2\sqrt{2}} \left( \tan^{-1}\left(\frac{5}{\sqrt{2}}\right) - \frac{\pi}{4} \right) \] This is the evaluated integral.