Tentukan titik-titik di mana fungsi berikut diskontinu. a. \( f(x)=\sqrt[3]{x^{2}-1} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Fungsi \( f(x)=\sqrt[3]{x^{2}-1} \) adalah fungsi yang didefinisikan untuk semua bilangan real karena akar kubik selalu terdefinisi, tak peduli nilai di dalamnya. Namun, kita perlu melihat ketika bagian dalam akar (yaitu \( x^2 - 1 \)) bernilai negatif, positif, atau nol. Fungsi ini hanya akan diskontinu jika ada pembagian dengan nol, tapi disini tidak ada. Jadi, fungsi ini kontinyu di seluruh domainnya, yaitu untuk semua \( x \). Namun, untuk menggali lebih dalam, titik-titik di mana \( f(x) \) menghasilkan nilai 0 adalah ketika \( x^2 - 1 = 0 \), yaitu di \( x = \pm 1 \). Meskipun begitu, fungsi tetap kontinu di titik-titik tersebut, karena \( f(x) \) mengatasi perubahan nilai tersebut dengan lembut.