Pregunta
upstudy study bank question image url

Find the Horizontal Asymptote of this function... \[ \begin{array}{l}\frac{5 x^{3}-x^{2}+6}{x-4}\end{array} \]

Ask by Dawson Conner. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is no horizontal asymptote for the function \( \frac{5x^3 - x^2 + 6}{x - 4} \).

Solución

To determine the horizontal asymptote of the function: \[ f(x) = \frac{5x^3 - x^2 + 6}{x - 4} \] we analyze the degrees of the polynomial in the numerator and the denominator. 1. **Degree of the Numerator (P(x))**: The highest power of \( x \) in the numerator is \( x^3 \), so the degree is **3**. 2. **Degree of the Denominator (Q(x))**: The highest power of \( x \) in the denominator is \( x \), so the degree is **1**. **Rules for Horizontal Asymptotes:** - **If the degree of \( P(x) \) < degree of \( Q(x) \):** The horizontal asymptote is \( y = 0 \). - **If the degree of \( P(x) \) = degree of \( Q(x) \):** The horizontal asymptote is \( y = \frac{\text{Leading Coefficient of } P(x)}{\text{Leading Coefficient of } Q(x)} \). - **If the degree of \( P(x) \) > degree of \( Q(x) \):** There is **no horizontal asymptote**. Instead, the function may have an oblique (slant) asymptote or a more complex behavior. In this case, since the degree of the numerator (3) is greater than the degree of the denominator (1), **there is no horizontal asymptote** for the function \( f(x) \). **Conclusion:** The function \( \frac{5x^3 - x^2 + 6}{x - 4} \) does **not** have a horizontal asymptote. **Answer:** There is no horizontal asymptote for the given function.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the horizontal asymptote of the function \( \frac{5x^{3}-x^{2}+6}{x-4} \), we need to look at the degrees of the numerator and the denominator. The highest degree in the numerator is 3 (from \(5x^{3}\)), and the highest degree in the denominator is 1 (from \(x\)). Since the degree of the numerator (3) is greater than the degree of the denominator (1), there is no horizontal asymptote for this function. Instead, the function will display polynomial growth as \(x\) approaches infinity. As a fun fact, when dealing with rational functions, if the degree of the numerator is less than the degree of the denominator, then the horizontal asymptote is \(y = 0\). And if the degrees are the same, the horizontal asymptote can be found by taking the ratio of the leading coefficients. This helps you visualize how the function behaves at extreme values of \(x\)!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad