Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 89 and standard deviation 4 . What is the probability that \( X \) is between 87 and 91 ? Write your answer as a decimal rounded to the nearest thousandth.

Ask by Black Ayala. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 87 and 91 is **0.383**.

Solución

To find the probability that \( X \) is between 87 and 91, where \( X \) is normally distributed with a mean (\( \mu \)) of 89 and a standard deviation (\( \sigma \)) of 4, follow these steps: 1. **Standardize the Values:** Convert the values 87 and 91 to their corresponding Z-scores using the formula: \[ Z = \frac{X - \mu}{\sigma} \] - For \( X = 87 \): \[ Z_1 = \frac{87 - 89}{4} = -0.5 \] - For \( X = 91 \): \[ Z_2 = \frac{91 - 89}{4} = 0.5 \] 2. **Use the Standard Normal Distribution Table:** Find the probabilities corresponding to \( Z_1 = -0.5 \) and \( Z_2 = 0.5 \). - \( \Phi(0.5) \approx 0.6915 \) - \( \Phi(-0.5) = 1 - \Phi(0.5) \approx 1 - 0.6915 = 0.3085 \) 3. **Calculate the Probability Between the Two Z-scores:** \[ P(87 \leq X \leq 91) = \Phi(0.5) - \Phi(-0.5) \approx 0.6915 - 0.3085 = 0.383 \] Rounded to the nearest thousandth, the probability is **0.383**. **Answer:** 0.383

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 87 and 91, we first need to standardize these values using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] Where \( \mu \) is the mean and \( \sigma \) is the standard deviation. 1. For \( X = 87 \): \[ Z_{87} = \frac{87 - 89}{4} = \frac{-2}{4} = -0.5 \] 2. For \( X = 91 \): \[ Z_{91} = \frac{91 - 89}{4} = \frac{2}{4} = 0.5 \] Next, we can find the probabilities corresponding to these Z-scores using the standard normal distribution table or a calculator: - For \( Z = -0.5 \), the probability \( P(Z < -0.5) \) is approximately 0.3085. - For \( Z = 0.5 \), the probability \( P(Z < 0.5) \) is approximately 0.6915. Now, to find the probability that \( X \) is between 87 and 91, we calculate: \[ P(87 < X < 91) = P(Z < 0.5) - P(Z < -0.5) \] \[ = 0.6915 - 0.3085 = 0.3830 \] Thus, the probability that \( X \) is between 87 and 91 is approximately 0.383 (when rounded to the nearest thousandth).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad