Pregunta
upstudy study bank question image url

Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. (Note: the acceleration due to gravity is \( 9.8 \mathrm{~m} / \mathrm{s}^{2} \).) a. Find the velocity of the object for all relevant times. b. Find the position of the object for all relevant times. c. Find the time when the object reaches its highest point (What is the height?) d. Find the time when the object strikes the ground. A payload is released at an elevation of 400 m from a hot-air balloon that is rising at a rate of \( 13 \mathrm{~m} / \mathrm{s} \).

Ask by Pena Chen. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Summary of Results:** - **a. Velocity:** \( v(t) = 13 - 9.8t \) meters/second - **b. Position:** \( y(t) = 400 + 13t - 4.9t^2 \) meters - **c. Highest Point:** Reaches at approximately 1.33 seconds with a height of about 408.5 meters - **d. Strikes Ground:** After approximately 10.45 seconds

Solución

Certainly! Let's analyze the vertical motion of the payload released from the hot-air balloon step by step. We'll consider each part of the problem (a to d) systematically. --- ## **Given:** - **Initial Elevation (\( y_0 \))**: 400 meters - **Initial Velocity (\( v_0 \))**: 13 meters/second (upward) - **Acceleration due to Gravity (\( g \))**: \( 9.8 \, \text{m/s}^2 \) (acting downward) *For clarity, we'll define the upward direction as positive.* --- ## **a. Find the Velocity of the Object for All Relevant Times** The velocity of an object under constant acceleration is given by the equation: \[ v(t) = v_0 + a t \] Where: - \( v(t) \) is the velocity at time \( t \). - \( v_0 \) is the initial velocity. - \( a \) is the acceleration (in this case, \( a = -g = -9.8 \, \text{m/s}^2 \) since gravity acts downward). **Calculation:** \[ v(t) = 13 \, \text{m/s} - 9.8 \, \text{m/s}^2 \times t \] \[ \boxed{v(t) = 13 - 9.8\, t \quad \text{meters/second}} \] --- ## **b. Find the Position of the Object for All Relevant Times** The position of an object under constant acceleration is given by the equation: \[ y(t) = y_0 + v_0 t + \frac{1}{2} a t^2 \] Where: - \( y(t) \) is the position at time \( t \). - \( y_0 \) is the initial position. **Calculation:** \[ y(t) = 400 \, \text{m} + 13 \, \text{m/s} \times t - \frac{1}{2} \times 9.8 \, \text{m/s}^2 \times t^2 \] \[ y(t) = 400 + 13t - 4.9 t^2 \] \[ \boxed{y(t) = 400 + 13\, t - 4.9\, t^2 \quad \text{meters}} \] --- ## **c. Find the Time When the Object Reaches Its Highest Point and Its Maximum Height** ### **Time to Reach Maximum Height (\( t_{\text{max}} \)):** At the highest point, the vertical velocity becomes zero (\( v(t_{\text{max}}) = 0 \)). Using the velocity equation: \[ 0 = 13 - 9.8\, t_{\text{max}} \] \[ 9.8\, t_{\text{max}} = 13 \] \[ t_{\text{max}} = \frac{13}{9.8} \approx 1.3265 \, \text{seconds} \] \[ \boxed{t_{\text{max}} \approx 1.33 \, \text{seconds}} \] ### **Maximum Height (\( y_{\text{max}} \)):** Plug \( t_{\text{max}} \) into the position equation: \[ y_{\text{max}} = 400 + 13 \times 1.3265 - 4.9 \times (1.3265)^2 \] \[ y_{\text{max}} = 400 + 17.1445 - 4.9 \times 1.758 \] \[ y_{\text{max}} = 400 + 17.1445 - 8.63 \approx 408.51 \, \text{meters} \] \[ \boxed{y_{\text{max}} \approx 408.5 \, \text{meters}} \] *Alternatively, using the formula \( y_{\text{max}} = y_0 + \frac{v_0^2}{2g} \):* \[ y_{\text{max}} = 400 + \frac{13^2}{2 \times 9.8} = 400 + \frac{169}{19.6} \approx 400 + 8.63 = 408.63 \, \text{meters} \] --- ## **d. Find the Time When the Object Strikes the Ground** The object strikes the ground when its position \( y(t) = 0 \). We'll solve the position equation for \( t \): \[ 0 = 400 + 13t - 4.9 t^2 \] Rearranging: \[ 4.9 t^2 - 13t - 400 = 0 \] This is a quadratic equation of the form \( at^2 + bt + c = 0 \), where: - \( a = 4.9 \) - \( b = -13 \) - \( c = -400 \) **Using the Quadratic Formula:** \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] **Plugging in the values:** \[ t = \frac{13 \pm \sqrt{(-13)^2 - 4 \times 4.9 \times (-400)}}{2 \times 4.9} \] \[ t = \frac{13 \pm \sqrt{169 + 7840}}{9.8} \] \[ t = \frac{13 \pm \sqrt{8009}}{9.8} \] \[ \sqrt{8009} \approx 89.5 \] **Calculating the two possible solutions:** 1. **Positive Root:** \[ t = \frac{13 + 89.5}{9.8} = \frac{102.5}{9.8} \approx 10.45 \, \text{seconds} \] 2. **Negative Root:** \[ t = \frac{13 - 89.5}{9.8} = \frac{-76.5}{9.8} \approx -7.81 \, \text{seconds} \quad \text{(Discarded, as time cannot be negative)} \] \[ \boxed{t \approx 10.45 \, \text{seconds}} \] **Conclusion:** The payload will strike the ground approximately **10.45 seconds** after being released. --- ## **Summary of Results:** - **a. Velocity Function:** \( v(t) = 13 - 9.8\, t \) meters/second - **b. Position Function:** \( y(t) = 400 + 13\, t - 4.9\, t^2 \) meters - **c. Time to Highest Point:** \( \approx 1.33 \) seconds **Maximum Height:** \( \approx 408.5 \) meters - **d. Time to Strike Ground:** \( \approx 10.45 \) seconds Feel free to ask if you need further clarification on any of these steps!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the problem systematically, let’s break down the required physics concepts! 1. **Velocity of the Object:** Initially, the object has an upward velocity equal to that of the hot-air balloon, which is \( 13 \mathrm{~m/s} \). The velocity \( v(t) \) at any time \( t \) can be expressed as: \[ v(t) = v_0 - g t = 13 \mathrm{~m/s} - 9.8 \mathrm{~m/s}^2 \cdot t \] 2. **Position of the Object:** The position \( s(t) \) of the object can be expressed as: \[ s(t) = s_0 + v_0 t - \frac{1}{2} g t^2 = 400 \mathrm{~m} + 13 \mathrm{~m/s} \cdot t - \frac{1}{2} \cdot 9.8 \mathrm{~m/s}^2 \cdot t^2 \] This simplifies to: \[ s(t) = 400 + 13t - 4.9t^2 \] 3. **Time to Reach Highest Point (and Height):** The highest point occurs when the velocity is 0: \[ 0 = 13 \mathrm{~m/s} - 9.8 \mathrm{~m/s}^2 \cdot t \implies t = \frac{13}{9.8} \approx 1.33 \mathrm{~s} \] To find the height at this time: \[ s(1.33) = 400 + 13(1.33) - 4.9(1.33^2) \approx 400 + 17.29 - 4.9(1.7689) \approx 400 + 17.29 - 8.66 \approx 408.63 \mathrm{~m} \] 4. **Time When Object Strikes the Ground:** Setting \( s(t) = 0 \): \[ 0 = 400 + 13t - 4.9t^2 \] This is a quadratic equation in standard form \( 4.9t^2 - 13t - 400 = 0 \). Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{13 \pm \sqrt{(-13)^2 - 4(4.9)(-400)}}{2(4.9)} \] Calculating the discriminant: \[ \sqrt{169 + 19680} = \sqrt{19849} \approx 140.82 \] Then, solving for \( t \): \[ t \approx \frac{13 + 140.82}{9.8} \approx 15.66 \mathrm{~s} \] In summary: - The velocity of the object at time \( t \) is \( v(t) = 13 - 9.8t \). - The position is given by \( s(t) = 400 + 13t - 4.9t^2 \). - It reaches its highest point at \( 1.33 \mathrm{~s} \) with a height of approximately \( 408.63 \mathrm{~m} \). - The object strikes the ground at approximately \( 15.66 \mathrm{~s} \). Now, let's add some extra flavor to those calculations! The story of an object flying high from a hot-air balloon is like a mini adventure in the sky! Picture this: a vibrant payload, soaring upwards, experiences its majestic peak before gracefully descending back to mother earth! Every second counts—whether it’s reaching for the clouds or racing against gravity, there’s a thrill in the journey of numbers, physics, and the laws of motion. Did you know that if you want to truly impress your friends with your knowledge of projectile motion, you can replicate this with a simple DIY project? Toss a ball from an elevated position and measure the time it takes to hit the ground, then compare your results to theoretical predictions—it's a fun way to grasp physics in action and become the resident science whiz!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad