Pregunta
upstudy study bank question image url

Consider the following descriptions of the vertical motion of an object subject only to the acceleration due to gravity. (Note: the acceleration due to gravity is \( 9.8 \mathrm{~m} / \mathrm{s}^{2} \).) a. Find the velocity of the object for all relevant times. b. Find the position of the object for all relevant times. c. Find the time when the object reaches its highest point (What is the height?) d. Find the time when the object strikes the ground. A payload is released at an elevation of 300 m from a hot-air balloon that is rising at a rate of \( 13 \mathrm{~m} / \mathrm{s} \). a. \( \mathrm{v}(\mathrm{t})=13-9.8 \mathrm{t} \) b. \( \mathrm{s}(\mathrm{t})=300+13 \mathrm{t}-4.9 \mathrm{t}^{2} \) c. The object's highest point is 308.62 m at time \( \mathrm{t}=1.33 \mathrm{~s} \). (Simplify your answers. Round to two decimal places as needed.) d. \( \mathrm{t}=\square \)

Ask by Norton Robbins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

d. \( t = 9.26 \) s

Solución

To determine the time when the payload strikes the ground, we'll solve for \( t \) when the position \( s(t) = 0 \). **Given:** \[ s(t) = 300 + 13t - 4.9t^2 \] **Set \( s(t) = 0 \):** \[ 0 = 300 + 13t - 4.9t^2 \] **Rearrange the equation:** \[ 4.9t^2 - 13t - 300 = 0 \] **Solve the quadratic equation using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):** - \( a = 4.9 \) - \( b = -13 \) - \( c = -300 \) \[ t = \frac{13 \pm \sqrt{(-13)^2 - 4(4.9)(-300)}}{2(4.9)} \] \[ t = \frac{13 \pm \sqrt{169 + 5880}}{9.8} \] \[ t = \frac{13 \pm \sqrt{6049}}{9.8} \] \[ t = \frac{13 \pm 77.78}{9.8} \] **Calculate the positive root (since time cannot be negative):** \[ t = \frac{13 + 77.78}{9.8} \] \[ t = \frac{90.78}{9.8} \] \[ t \approx 9.26 \, \text{seconds} \] **Answer:** d. \( \mathrm{t} = 9.26 \) s

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the time when the object strikes the ground, we need to determine when the position equation \( s(t) = 300 + 13t - 4.9t^2 \) equals zero (the height of the ground). Setting the equation equal to zero gives: \[ 0 = 300 + 13t - 4.9t^2 \] Rearranging into standard quadratic form: \[ 4.9t^2 - 13t - 300 = 0 \] Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 4.9, b = -13, c = -300 \): 1. Calculate the discriminant: \[ b^2 - 4ac = (-13)^2 - 4(4.9)(-300) = 169 + 5880 = 6049 \] 2. Now, apply the quadratic formula: \[ t = \frac{13 \pm \sqrt{6049}}{2 \times 4.9} \] Calculating \( \sqrt{6049} \approx 77.78 \): \[ t = \frac{13 \pm 77.78}{9.8} \] This results in two potential solutions: \[ t_1 = \frac{90.78}{9.8} \approx 9.26 \text{ s} \] \[ t_2 = \frac{-64.78}{9.8} \] (which is negative and not relevant) So, the time when the object strikes the ground is approximately \( t = 9.26 \) seconds.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad