Pregunta
upstudy study bank question image url

If a function is translated 6 units down, in which direction will the inverse of the functic be transformed? (1 point) The inverse of the given function will be translated 6 units down. The inverse of the given function will be translated 6 units left. The inverse of the given function will be translated 6 units up. The inverse of the given function will be translated 6 units right.

Ask by Hobbs Bright. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The inverse of the given function will be translated 6 units up.

Solución

To determine how the inverse of a function is transformed when the original function is translated, we need to understand the relationship between a function and its inverse. 1. **Translation of the Function**: When a function \( f(x) \) is translated 6 units down, the new function can be expressed as: \[ g(x) = f(x) - 6 \] 2. **Finding the Inverse**: The inverse of a function \( f \) is denoted as \( f^{-1} \). The transformation of the inverse function is related to the transformation of the original function. 3. **Effect on the Inverse**: If the original function \( f(x) \) is translated down by 6 units, the inverse function \( f^{-1}(x) \) will be affected in the opposite direction. This is because the inverse function reflects the original function across the line \( y = x \). 4. **Conclusion**: Therefore, if the original function is translated 6 units down, the inverse function will be translated 6 units up. Thus, the correct answer is: **The inverse of the given function will be translated 6 units up.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When a function is translated 6 units down, its inverse will actually be translated 6 units up. This is because the transformation that affects the original function is reversed for its inverse. So, if you lower the original function, its inverse has to lift up to maintain the relationship. This relationship stems from the fact that for a function \( f \) and its inverse \( f^{-1} \), the coordinates switch. If the output of \( f \) decreases by a certain amount, the output of \( f^{-1} \) must compensate by increasing by that same amount, keeping the input and output interconnected!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad