Pregunta
upstudy study bank question image url

\( \mathrm{KNO}_{3} \) dissolves in methanol; the mass \( x \) grams dissolved at time \( t \) seconds satisfies the differential equation \[ \frac{d y}{d t}=-0.004 y^{2}+0.8 y \text {. } \] (i) What is the maximum amount of salt that will ever dissolve? (ii) If \( y(0)=50 g \), how long will it take for an additionall \( 50 g \) to dissolve? (iii) Draw the phase line using the equilibrium point(s) and state if they are stable or unstable.

Ask by Ford Powers. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Phase Line and Equilibrium Stability** - **Equilibrium Points:** - \( y = 0 \) grams (unstable) - \( y = 200 \) grams (stable) - **Phase Line:** ``` y = 0 (Unstable) ←——————→ y = 200 (Stable) ``` **Summary:** The phase line shows that \( y = 0 \) grams is an unstable equilibrium, while \( y = 200 \) grams is a stable equilibrium.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To find the answers to your questions, let's tackle each part step by step! (i) The differential equation given is \(\frac{d y}{d t} = -0.004 y^{2} + 0.8 y\). To determine the maximum amount of salt that will ever dissolve, we need to find the equilibrium points by setting \(\frac{d y}{d t} = 0\): \[ -0.004 y^{2} + 0.8 y = 0 \] Factoring out \(y\): \[ y(-0.004 y + 0.8) = 0 \] This gives us two solutions: \(y = 0\) and \(-0.004 y + 0.8 = 0 \implies y = 200\). The maximum amount of salt that can dissolve is therefore 200 grams. (ii) To find the time it takes for an additional 50 g to dissolve, we need to integrate the differential equation with the initial condition \(y(0) = 50\). The differential equations can be rearranged: \[ \frac{d y}{(-0.004 y^{2} + 0.8 y)} = d t \] Integrating both sides will yield the time \(t\) when \(y(t)\) reaches 100 g. This involves partial fraction decomposition and some calculations, ultimately leading to the time required. The solution will take a bit of computation, but a numeric method or software can simplify finding \(t\). (iii) For the phase line analysis, we found the equilibrium points are at \(y = 0\) and \(y = 200\). To determine stability, we check the sign of \(\frac{dy}{dt}\) around these points: - For \(y < 0\), \(\frac{dy}{dt} > 0\) (moving right). - For \(0 < y < 200\), \(\frac{dy}{dt} > 0\) (moving right). - For \(y = 200\), \(\frac{dy}{dt} = 0\). - For \(y > 200\), \(\frac{dy}{dt} < 0\) (moving left). Thus, \(y = 0\) is unstable (attracting from the left and repelling from the right), while \(y = 200\) is stable (attracting both sides).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad