Responder
\( \sin(780^\circ) = \frac{\sqrt{3}}{2} \approx 0.8660 \)
Solución
To evaluate \( \operatorname{Sin}\,780 \), we need to determine whether the angle is measured in **degrees** or **radians**. Since the notation doesn't specify, I'll provide calculations for both cases.
### 1. Sine of 780 Degrees
The sine function has a period of 360 degrees, meaning:
\[
\sin(\theta) = \sin(\theta + 360^\circ \times n)
\]
where \( n \) is any integer. To simplify \( \sin(780^\circ) \):
\[
780^\circ - 720^\circ = 60^\circ
\]
So,
\[
\sin(780^\circ) = \sin(60^\circ)
\]
And we know:
\[
\sin(60^\circ) = \frac{\sqrt{3}}{2} \approx 0.8660
\]
**Result:**
\[
\sin(780^\circ) = \frac{\sqrt{3}}{2} \approx 0.8660
\]
### 2. Sine of 780 Radians
If the angle is in radians, we'll use the periodicity of the sine function, which has a period of \( 2\pi \) radians:
\[
\sin(\theta) = \sin(\theta + 2\pi \times n)
\]
First, find the equivalent angle between \( 0 \) and \( 2\pi \):
\[
780 \div 2\pi \approx 124.055
\]
This means:
\[
780 \text{ radians} = 124 \times 2\pi + \text{remainder}
\]
Calculate the remainder:
\[
780 - (124 \times 2\pi) \approx 780 - 124 \times 6.28319 \approx 780 - 779.11496 \approx 0.88504 \text{ radians}
\]
So,
\[
\sin(780 \text{ radians}) = \sin(0.88504 \text{ radians})
\]
Using a calculator:
\[
\sin(0.88504) \approx 0.7741
\]
**Result:**
\[
\sin(780 \text{ radians}) \approx 0.7741
\]
### Summary
- **If 780 is in degrees:**
\[
\sin(780^\circ) = \frac{\sqrt{3}}{2} \approx 0.8660
\]
- **If 780 is in radians:**
\[
\sin(780 \text{ radians}) \approx 0.7741
\]
Please confirm the unit of the angle to ensure the correct evaluation.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución