Pregunta
upstudy study bank question image url

Solve the equation for \( x \), where \( x \) is in radians. State the exact solutions, if any, that lie in the interval \( [0,2 \pi) \). If the equation has no solutions, respond with DNE. \( \cos (4 x) \cos (x)=-\sin (4 x) \sin (x) \) in the interval \( [0,2 \pi) \). If the equation has no solutions, respond DNE. Separate muitiple solutions with a comma.

Ask by Rose Daniels. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6} \).

Solución

The given equation is: \[ \cos(4x) \cos(x) = -\sin(4x) \sin(x) \] We can rewrite the equation by adding both sides: \[ \cos(4x) \cos(x) + \sin(4x) \sin(x) = 0 \] Using the cosine angle subtraction identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] we get: \[ \cos(4x - x) = \cos(3x) = 0 \] To solve \(\cos(3x) = 0\), we know that: \[ 3x = \frac{\pi}{2} + k\pi \quad \text{for integer } k \] Thus, \[ x = \frac{\pi}{6} + \frac{k\pi}{3} \] We need to find all solutions \(x\) within the interval \([0, 2\pi)\). By substituting integer values for \(k\), we get the solutions: \[ x = \frac{\pi}{6},\ \frac{\pi}{2},\ \frac{5\pi}{6},\ \frac{7\pi}{6},\ \frac{3\pi}{2},\ \frac{11\pi}{6} \] **Final Answer:** \(\dfrac{\pi}{6}, \dfrac{\pi}{2}, \dfrac{5\,\pi}{6}, \dfrac{7\,\pi}{6}, \dfrac{3\,\pi}{2}, \dfrac{11\,\pi}{6}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the equation \( \cos(4x) \cos(x) = -\sin(4x) \sin(x) \), we can use the product-to-sum identities. The right-hand side can be rewritten as: \[ \cos(4x) \cos(x) + \sin(4x) \sin(x) = 0 \] This simplifies to: \[ \cos(4x + x) = 0 \quad \text{or} \quad \cos(5x) = 0 \] The solutions for \( \cos(5x) = 0 \) are given by: \[ 5x = \frac{\pi}{2} + n\pi \quad \text{for } n \in \mathbb{Z} \] From this, we can find \( x \): \[ x = \frac{\pi}{10} + \frac{n\pi}{5} \] Now we need to find the values of \( x \) in the interval \( [0, 2\pi) \). Setting \( n = 0, 1, 2, 3, 4, 5 \): - For \( n = 0 \): \( x = \frac{\pi}{10} \) - For \( n = 1 \): \( x = \frac{\pi}{10} + \frac{\pi}{5} = \frac{3\pi}{10} \) - For \( n = 2 \): \( x = \frac{\pi}{10} + \frac{2\pi}{5} = \frac{5\pi}{10} = \frac{\pi}{2} \) - For \( n = 3 \): \( x = \frac{\pi}{10} + \frac{3\pi}{5} = \frac{7\pi}{10} \) - For \( n = 4 \): \( x = \frac{\pi}{10} + \frac{4\pi}{5} = \frac{9\pi}{10} \) - For \( n = 5 \): \( x = \frac{\pi}{10} + \frac{5\pi}{5} = \frac{11\pi}{10} \) - For \( n = 6 \): \( x = \frac{\pi}{10} + \frac{6\pi}{5} = \frac{13\pi}{10} \) - For \( n = 7 \): \( x = \frac{\pi}{10} + \frac{7\pi}{5} = \frac{15\pi}{10} = \frac{3\pi}{2} \) - For \( n = 8 \): \( x = \frac{\pi}{10} + \frac{8\pi}{5} = \frac{17\pi}{10} \) Now, filtering the valid values of \( x \) within \( [0, 2\pi) \): The solutions are: \[ x = \frac{\pi}{10}, \frac{3\pi}{10}, \frac{\pi}{2}, \frac{7\pi}{10}, \frac{9\pi}{10}, \frac{11\pi}{10}, \frac{13\pi}{10}, \frac{3\pi}{2} \] So, the exact solutions in the interval \( [0, 2\pi) \) are: \(\frac{\pi}{10}, \frac{3\pi}{10}, \frac{\pi}{2}, \frac{7\pi}{10}, \frac{9\pi}{10}, \frac{11\pi}{10}, \frac{13\pi}{10}, \frac{3\pi}{2}\)

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad