Pregunta
upstudy study bank question image url

7. State whether the following pairs of lines are par- allel. If they are not parallel determine the point of intersection. (a) \( \underline{r}=i+j-k+\lambda(2 i-3 j+k) \) \( \underline{r}=3 i-2 j+\mu(i+j-k) \) (b) \( \frac{x-1}{4}=\frac{y-4}{3}=\frac{z+1}{2} \) \( \frac{x}{4}=\frac{y+5}{3}=\frac{z-3}{2} \)

Ask by Brooks Franklin. in the United Kingdom
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 7(a):** The lines are not parallel and intersect at the point (3, –2, 0). **Problem 7(b):** The lines are parallel and do not intersect.

Solución

Let's analyze each pair of lines to determine whether they are parallel. If they are not parallel, we'll find their point of intersection. --- ### **Problem 7(a)** **Given Lines:** 1. **Line 1:** \(\underline{r} = \mathbf{i} + \mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} - 3\mathbf{j} + \mathbf{k})\) 2. **Line 2:** \(\underline{r} = 3\mathbf{i} - 2\mathbf{j} + \mu(\mathbf{i} + \mathbf{j} - \mathbf{k})\) **Step 1: Check for Parallelism** - **Direction Vector of Line 1:** \( \mathbf{d}_1 = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} \) - **Direction Vector of Line 2:** \( \mathbf{d}_2 = \mathbf{i} + \mathbf{j} - \mathbf{k} \) To determine if the lines are parallel, check if the direction vectors are scalar multiples of each other: \[ 2\mathbf{i} - 3\mathbf{j} + \mathbf{k} = c(\mathbf{i} + \mathbf{j} - \mathbf{k}) \] Comparing components: - \( 2 = c \) - \( -3 = c \) - \( 1 = -c \) This leads to a contradiction (e.g., \( c = 2 \) and \( c = -3 \)), so **the lines are not parallel**. **Step 2: Find the Point of Intersection** Set the parametric equations equal to each other: \[ \mathbf{i} + \mathbf{j} - \mathbf{k} + \lambda(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = 3\mathbf{i} - 2\mathbf{j} + \mu(\mathbf{i} + \mathbf{j} - \mathbf{k}) \] Equate the corresponding components: \[ \begin{cases} 1 + 2\lambda = 3 + \mu \quad \text{(x-component)} \\ 1 - 3\lambda = -2 + \mu \quad \text{(y-component)} \\ -1 + \lambda = -\mu \quad \text{(z-component)} \end{cases} \] From the z-component: \[ -1 + \lambda = -\mu \Rightarrow \mu = 1 - \lambda \] Substitute \(\mu = 1 - \lambda\) into the x-component: \[ 1 + 2\lambda - (1 - \lambda) = 3 \Rightarrow 3\lambda = 3 \Rightarrow \lambda = 1 \] Then, \(\mu = 1 - 1 = 0\). **Intersection Point:** Substitute \(\lambda = 1\) into Line 1's equation: \[ \underline{r} = \mathbf{i} + \mathbf{j} - \mathbf{k} + 1(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}) = 3\mathbf{i} - 2\mathbf{j} + 0\mathbf{k} \] **Therefore, the lines intersect at the point \((3, -2, 0)\).** --- ### **Problem 7(b)** **Given Lines:** 1. **Line 1:** \(\frac{x - 1}{4} = \frac{y - 4}{3} = \frac{z + 1}{2}\) 2. **Line 2:** \(\frac{x}{4} = \frac{y + 5}{3} = \frac{z - 3}{2}\) **Step 1: Check for Parallelism** Express both lines in parametric form: - **Line 1:** \[ \begin{cases} x = 1 + 4\lambda \\ y = 4 + 3\lambda \\ z = -1 + 2\lambda \end{cases} \] - **Line 2:** \[ \begin{cases} x = 4\mu \\ y = -5 + 3\mu \\ z = 3 + 2\mu \end{cases} \] - **Direction Vector for Both Lines:** \( \mathbf{d} = 4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k} \) Since both lines share the same direction vector, **they are parallel**. **Step 2: Determine if They are Distinct or Coincident** To check if the lines coincide, see if a point from one line lies on the other. - **Point on Line 1:** \((1, 4, -1)\) Check if this point satisfies Line 2's equations: \[ \frac{1}{4} = \frac{4 + 5}{3} = \frac{-1 - 3}{2} \Rightarrow \frac{1}{4} \neq 3 \neq -2 \] Since the point does not satisfy Line 2's equations, **the lines are distinct and parallel**. --- ### **Final Answer** **Problem 7(a) Answer:** The lines are not parallel and intersect at the point (3, –2, 0). **Problem 7(b) Answer:** The lines are parallel and do not intersect.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine whether the pairs of lines are parallel or not, let’s analyze each pair. (a) The lines are given in vector form: 1. Line 1: \( \underline{r}=i+j-k+\lambda(2 i-3 j+k) \) Direction vector: \( \mathbf{d_1} = \langle 2, -3, 1 \rangle \) 2. Line 2: \( \underline{r}=3 i-2 j+\mu(i+j-k) \) Direction vector: \( \mathbf{d_2} = \langle 1, 1, -1 \rangle \) To check if the lines are parallel, we need to see if the direction vectors are scalar multiples of each other. Here, \( \mathbf{d_1} \) and \( \mathbf{d_2} \) are not proportional since \( \frac{2}{1} \neq \frac{-3}{1} \neq \frac{1}{-1} \). Thus, the lines are not parallel. To find the intersection, we set the equations equal to each other and solve for \(\lambda\) and \(\mu\): \[ \begin{align*} 1 + 2\lambda & = 3 + \mu \\ 1 - 3\lambda & = -2 + \mu \\ -1 + \lambda & = -3 + \mu \end{align*} \] Solving the first two equations, we find \(\lambda = 1\) and \(\mu = 4\). Substituting back, both lines intersect at the point \((5, 1, 0)\). (b) The lines are given in symmetric form: 1. Line 1: \( \frac{x-1}{4}=\frac{y-4}{3}=\frac{z+1}{2} \) This can be represented as a point \( (1, 4, -1) \) and direction vector \( \mathbf{d_1} = \langle 4, 3, 2 \rangle \) 2. Line 2: \( \frac{x}{4}=\frac{y+5}{3}=\frac{z-3}{2} \) This can be represented as a point \( (0, -5, 3) \) and direction vector \( \mathbf{d_2} = \langle 4, 3, 2 \rangle \) To check if they are parallel, we see that the direction vectors \( \mathbf{d_1} \) and \( \mathbf{d_2} \) are indeed equal. However, we need to check if they point in the same direction based on the coordinates: Calculating the difference in position: - Line 1: \( (1, 4, -1) \) - Line 2: \( (0, -5, 3) \) Since the lines have the same directional vector but do not have a common point, they are parallel and do not intersect.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad