Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) The size P of a certain insect population at time t (in days) obeys the function \( \mathrm{P}(\mathrm{t})=600 e^{0.04 t} \) (a) Determine the number of insects at \( \mathrm{t}=0 \) days. (b) What is the growth rate of the insect population? (c) Graph the function using a graphing utility. (d) What is the population after 10 days? (e) When will the insect population reach 720 ? (f) When will the insect population double?

Ask by Fernandez Long. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- (a) 600 insects at \( t = 0 \) days. - (b) Growth rate is 0.04 per day. - (c) Graph the function using a graphing tool. - (d) Population after 10 days is approximately 895 insects. - (e) Population reaches 720 in about 4.56 days. - (f) Population doubles in about 17.33 days.

Solución

It seems that I am unable to generate the graph at this moment. However, you can easily graph the function \( P(t) = 600 e^{0.04 t} \) using any graphing utility or software such as Desmos, GeoGebra, or a graphing calculator. ### Summary of Answers: - (a) The number of insects at \( t = 0 \) days is **600**. - (b) The growth rate of the insect population is **0.04 per day**. - (c) Graphing the function can be done using graphing software. - (d) The population after 10 days is approximately **895** insects. - (e) The insect population will reach 720 in approximately **4.56 days**. - (f) The insect population will double in approximately **17.33 days**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle the questions regarding the given insect population function \( P(t) = 600 e^{0.04 t} \), let's break it down: (a) To determine the number of insects at \( t = 0 \), we substitute \( t \) with 0 in the function: \[ P(0) = 600 e^{0.04 \times 0} = 600 e^{0} = 600 \text{ insects}. \] (b) The growth rate of the insect population is represented by the coefficient of \( t \) in the exponent of the exponential function, which is \( 0.04 \). This means the population grows at a rate of \( 4\% \) per day. (c) To graph the function, you can use any graphing utility (like Desmos or a graphing calculator). Plot \( P(t) = 600 e^{0.04 t} \) and observe how it rises exponentially. (d) To find the population after 10 days, substitute \( t = 10 \) into the function: \[ P(10) = 600 e^{0.04 \times 10} = 600 e^{0.4} \approx 600 \times 1.49182 \approx 894.91. \] Thus, the population after 10 days is approximately \( 895 \) insects. (e) To find when the population reaches 720, set \( P(t) = 720 \): \[ 720 = 600 e^{0.04 t} \] Divide both sides by 600: \[ 1.2 = e^{0.04 t}. \] Taking the natural logarithm of both sides: \[ \ln(1.2) = 0.04 t \implies t = \frac{\ln(1.2)}{0.04} \approx 5.007. \] So, the population will reach 720 insects in about \( 5.01 \) days. (f) To determine when the population will double, set \( P(t) = 1200 \): \[ 1200 = 600 e^{0.04 t} \implies 2 = e^{0.04 t}. \] Taking the natural logarithm: \[ \ln(2) = 0.04 t \implies t = \frac{\ln(2)}{0.04} \approx 17.328. \] Hence, the insect population will double in about \( 17.33 \) days.

preguntas relacionadas

Latest Biology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad