Determine where the following function is continuous. \( M(x)=\frac{x-3}{9 x^{2}-64} \) The function is continuous on \( \square \). (Type your answer in interval notation, Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine where the function \( M(x) = \frac{x-3}{9x^2 - 64} \) is continuous, we first need to identify where the denominator is equal to zero since the function will be discontinuous at those points. So, we set: \( 9x^2 - 64 = 0 \) Solving for \( x \), we get: \( 9x^2 = 64 \) \( x^2 = \frac{64}{9} \) \( x = \pm \frac{8}{3} \) Thus, the function is discontinuous at \( x = \frac{8}{3} \) and \( x = -\frac{8}{3} \). The intervals where the function is continuous are: \( (-\infty, -\frac{8}{3}) \), \( (-\frac{8}{3}, \frac{8}{3}) \), and \( (\frac{8}{3}, \infty) \). So, the function is continuous on \( (-\infty, -\frac{8}{3}) \cup (-\frac{8}{3}, \frac{8}{3}) \cup (\frac{8}{3}, \infty) \).