Pregunta
upstudy study bank question image url

Determine the average value of the piecewise function \( f \) defined below on the interval \( x=-1 \) to \( x=2 \). Express your answer in simplest form. \[ f(x)=\left\{\begin{array}{lll}-6 x^{2} & \text { for } & x<0 \\ -8 x+6 & \text { for } & x \geq 0\end{array}\right. \]

Ask by Griffiths Davey. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The average value of the function \( f(x) \) on the interval from \( x = -1 \) to \( x = 2 \) is \(-2\).

Solución

To determine the average value of the piecewise function \( f(x) \) on the interval \( x = -1 \) to \( x = 2 \), follow these steps: 1. **Understand the Average Value Formula:** The average value of a function \( f(x) \) over an interval \([a, b]\) is given by: \[ \text{Average value} = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \] 2. **Break the Integral into Parts:** Since \( f(x) \) is defined differently for \( x < 0 \) and \( x \geq 0 \), split the integral at \( x = 0 \): \[ \int_{-1}^{2} f(x) \, dx = \int_{-1}^{0} (-6x^2) \, dx + \int_{0}^{2} (-8x + 6) \, dx \] 3. **Evaluate the Integrals:** - **First Integral (\( x \) from -1 to 0):** \[ \int_{-1}^{0} (-6x^2) \, dx = -6 \left( \frac{x^3}{3} \right) \Big|_{-1}^{0} = -2x^3 \Big|_{-1}^{0} = -2(0)^3 - (-2(-1)^3) = -2 \] - **Second Integral (\( x \) from 0 to 2):** \[ \int_{0}^{2} (-8x + 6) \, dx = \left( -4x^2 + 6x \right) \Big|_{0}^{2} = (-16 + 12) - (0) = -4 \] 4. **Sum the Integrals and Compute the Average:** \[ \text{Total integral} = -2 + (-4) = -6 \] \[ \text{Average value} = \frac{-6}{2 - (-1)} = \frac{-6}{3} = -2 \] **Thus, the average value of \( f(x) \) on the interval from \( x = -1 \) to \( x = 2 \) is \(-2\).** \(-2\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the average value of the piecewise function \( f(x) \) on the interval \( x = -1 \) to \( x = 2 \), we first calculate the average value using the formula: \[ \text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx \] In this case, \( a = -1 \) and \( b = 2 \). ### Step 1: Calculate the integral of \( f(x) \). We split the integral at the point where the definition of \( f(x) \) changes, which is at \( x = 0 \): \[ \int_{-1}^2 f(x) \, dx = \int_{-1}^0 f(x) \, dx + \int_{0}^2 f(x) \, dx \] ### For \( x < 0 \) (from -1 to 0): Here, \( f(x) = -6x^2 \), so we evaluate: \[ \int_{-1}^0 -6x^2 \, dx \] Calculating this integral: \[ = -6 \int_{-1}^0 x^2 \, dx = -6 \left[ \frac{x^3}{3} \right]_{-1}^0 = -6 \left( 0 - \frac{(-1)^3}{3} \right) = -6 \left( 0 + \frac{1}{3} \right) = -2 \] ### For \( x \geq 0 \) (from 0 to 2): Here, \( f(x) = -8x + 6 \), so we evaluate: \[ \int_{0}^2 (-8x + 6) \, dx \] Calculating this integral: \[ = \left[ -4x^2 + 6x \right]_{0}^2 = \left( -4(2^2) + 6(2) \right) - \left( -4(0^2) + 6(0) \right) = (-16 + 12) - 0 = -4 \] ### Step 2: Combine the results from both intervals: Now we combine the integrals: \[ \int_{-1}^2 f(x) \, dx = -2 + (-4) = -6 \] ### Step 3: Find the average value: Now we apply the average value formula: \[ \text{Average value} = \frac{1}{2 - (-1)} \int_{-1}^2 f(x) \, dx = \frac{1}{3} \times (-6) = -2 \] Thus, the average value of the piecewise function \( f \) on the interval from \( x = -1 \) to \( x = 2 \) is \[ \boxed{-2} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad