Pregunta
upstudy study bank question image url

Determine if the expression \( -6 r^{2} \sqrt{6}+\frac{1}{r^{3}}-8 r^{4} \) is a polynomial or not. If it is a polynomial, state the type and degree of the polynomial. Answer Attempt 1 out of 2 The given expression \( \sim \) a polynomial.

Ask by Best Cox. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression is not a polynomial because it includes a term with a negative exponent.

Solución

To determine whether the expression \[ -6 r^{2} \sqrt{6} + \frac{1}{r^{3}} - 8 r^{4} \] is a polynomial, we need to examine each term in the expression. **Definition of a Polynomial:** A polynomial in variable \( r \) is an expression consisting of terms with non-negative integer exponents of \( r \). Each term is of the form \( a_n r^n \), where \( a_n \) is a constant coefficient and \( n \) is a non-negative integer. **Analyzing Each Term:** 1. **\(-6 r^{2} \sqrt{6}\):** - This term can be rewritten as \(-6 \sqrt{6} \cdot r^{2}\). - The exponent of \( r \) is \( 2 \), which is a non-negative integer. 2. **\(\frac{1}{r^{3}}\):** - This term can be rewritten as \( r^{-3} \). - The exponent of \( r \) is \( -3 \), which is a negative integer. 3. **\(-8 r^{4}\):** - The exponent of \( r \) is \( 4 \), which is a non-negative integer. **Conclusion:** - The presence of the term \( \frac{1}{r^{3}} \) (or \( r^{-3} \)) introduces a negative exponent. - Since polynomials require all exponents to be non-negative integers, this term violates the definition of a polynomial. **Therefore, the given expression is **_not_** a polynomial**. **Final Answer:** No. Because it includes a term with a negative exponent, the expression is not a polynomial.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The given expression \( -6 r^{2} \sqrt{6}+\frac{1}{r^{3}}-8 r^{4} \) is not a polynomial because it contains a term with \( \frac{1}{r^{3}} \), which can be rewritten as \( r^{-3} \). Polynomials only contain non-negative integer exponents of the variable. In this case, we have \( r^2 \), \( r^4 \) (which are fine) but \( r^{-3} \) disqualifies it. Hence, we can confidently say it's not a polynomial! Remember, every term in a polynomial must adhere to the strict rule of having non-negative integer exponent values for them to qualify. So no fractional or negative exponents allowed!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad