Pregunta
upstudy study bank question image url

Payments with periodic rates. Denise has her heart set on being a millionaire. What payment does Denise need to make at the end of each month over the coming 40 years at \( 9 \% \) APR to reach her retirement goal of \( \$ 1.2 \) million? What monthly payment does Denise need to make to reach her retirement goal? \( \$ \) (Round to the nearest cent.)

Ask by Powell Kelly. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Denise needs to make a monthly payment of approximately \$256.34 to reach her retirement goal of \$1.2 million in 40 years at a 9% annual interest rate.

Solución

To determine the monthly payment Denise needs to make to reach her retirement goal of \$1.2 million in 40 years at an annual interest rate of 9%, we can use the future value of an annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value of the annuity (the retirement goal, \$1,200,000). - \( P \) is the monthly payment (what we want to find). - \( r \) is the monthly interest rate (annual rate divided by 12). - \( n \) is the total number of payments (number of years multiplied by 12). ### Step 1: Calculate the monthly interest rate and total number of payments - Annual interest rate \( = 9\% = 0.09 \) - Monthly interest rate \( r = \frac{0.09}{12} \) - Total number of payments \( n = 40 \times 12 \) ### Step 2: Substitute the values into the formula and solve for \( P \) Rearranging the formula to solve for \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Now, let's calculate the values step by step. 1. Calculate \( r \) and \( n \): - \( r = \frac{0.09}{12} \) - \( n = 40 \times 12 \) 2. Substitute \( FV = 1,200,000 \), \( r \), and \( n \) into the formula for \( P \). Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(40\times 12\) - step1: Multiply the numbers: \(480\) Calculate or simplify the expression \( 0.09/12 \). Calculate the value by following steps: - step0: Calculate: \(\frac{0.09}{12}\) - step1: Convert the expressions: \(\frac{\frac{9}{100}}{12}\) - step2: Multiply by the reciprocal: \(\frac{9}{100}\times \frac{1}{12}\) - step3: Reduce the numbers: \(\frac{3}{100}\times \frac{1}{4}\) - step4: Multiply the fractions: \(\frac{3}{100\times 4}\) - step5: Multiply: \(\frac{3}{400}\) Calculate or simplify the expression \( 1200000*(0.0075)*((1+0.0075)^480-1) \). Calculate the value by following steps: - step0: Calculate: \(1200000\times 0.0075\left(\left(1+0.0075\right)^{480}-1\right)\) - step1: Add the numbers: \(1200000\times 0.0075\left(1.0075^{480}-1\right)\) - step2: Convert the expressions: \(1200000\times 0.0075\left(\left(\frac{403}{400}\right)^{480}-1\right)\) - step3: Subtract the numbers: \(1200000\times 0.0075\times \frac{403^{480}-400^{480}}{400^{480}}\) - step4: Multiply the terms: \(9000\times \frac{403^{480}-400^{480}}{400^{480}}\) - step5: Rewrite the expression: \(200\times 45\times \frac{403^{480}-400^{480}}{400^{480}}\) - step6: Rewrite the expression: \(200\times 45\times \frac{403^{480}-400^{480}}{200^{480}\times 2^{480}}\) - step7: Reduce the numbers: \(45\times \frac{403^{480}-400^{480}}{200^{479}\times 2^{480}}\) - step8: Rewrite the expression: \(5\times 9\times \frac{403^{480}-400^{480}}{200^{479}\times 2^{480}}\) - step9: Rewrite the expression: \(5\times 9\times \frac{403^{480}-400^{480}}{25^{479}\times 8^{479}\times 2^{480}}\) - step10: Rewrite the expression: \(5\times 9\times \frac{403^{480}-400^{480}}{5^{958}\times 8^{479}\times 2^{480}}\) - step11: Reduce the numbers: \(9\times \frac{403^{480}-400^{480}}{5^{957}\times 8^{479}\times 2^{480}}\) - step12: Multiply the fractions: \(\frac{9\left(403^{480}-400^{480}\right)}{5^{957}\times 2^{1917}}\) - step13: Multiply: \(\frac{9\times 403^{480}-9\times 400^{480}}{5^{957}\times 2^{1917}}\) Calculate or simplify the expression \( (1+0.0075)^480-1 \). Calculate the value by following steps: - step0: Calculate: \(\left(1+0.0075\right)^{480}-1\) - step1: Add the numbers: \(1.0075^{480}-1\) - step2: Convert the expressions: \(\left(\frac{403}{400}\right)^{480}-1\) - step3: Rewrite the expression: \(\frac{403^{480}}{400^{480}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{403^{480}}{400^{480}}-\frac{400^{480}}{400^{480}}\) - step5: Transform the expression: \(\frac{403^{480}-400^{480}}{400^{480}}\) Calculate or simplify the expression \( 1200000*0.0075/35.109902 \). Calculate the value by following steps: - step0: Calculate: \(\frac{1200000\times 0.0075}{35.109902}\) - step1: Multiply the numbers: \(\frac{9000}{35.109902}\) - step2: Convert the expressions: \(\frac{9000}{\frac{17554951}{500000}}\) - step3: Multiply by the reciprocal: \(9000\times \frac{500000}{17554951}\) - step4: Multiply: \(\frac{9000\times 500000}{17554951}\) - step5: Multiply: \(\frac{4500000000}{17554951}\) ### Step 1: Calculate Monthly Interest Rate and Total Payments - Monthly interest rate \( r = 0.0075 \) - Total number of payments \( n = 480 \) ### Step 2: Substitute Values into the Formula We need to calculate the monthly payment \( P \) using the rearranged formula: \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Substituting the values: - \( FV = 1,200,000 \) - \( r = 0.0075 \) - \( n = 480 \) Calculating \( (1 + r)^n - 1 \): \[ (1 + 0.0075)^{480} - 1 \approx 35.109902 \] Now substituting into the formula for \( P \): \[ P = \frac{1,200,000 \times 0.0075}{35.109902} \approx 256.34 \] ### Final Answer Denise needs to make a monthly payment of approximately **\$256.34** to reach her retirement goal of \$1.2 million in 40 years at a 9% annual interest rate.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much Denise needs to save each month, we can use the future value of an annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value of the annuity (in this case, \( \$ 1,200,000 \)). - \( P \) is the monthly payment (what we are trying to find). - \( r \) is the monthly interest rate (annual rate divided by 12). - \( n \) is the total number of payments (number of years times 12). 1. Convert the annual rate to a monthly rate: \[ r = \frac{9\%}{12} = 0.0075 \] 2. Calculate the total number of payments: \[ n = 40 \times 12 = 480 \] 3. Rearranging the formula to solve for \( P \): \[ P = \frac{FV}{\frac{(1 + r)^n - 1}{r}} \] 4. Plugging in the values: \[ P = \frac{1,200,000}{\frac{(1 + 0.0075)^{480} - 1}{0.0075}} \] 5. Calculate the denominator: \[ (1 + 0.0075)^{480} \approx 11.1183 \] \[ \frac{(11.1183 - 1)}{0.0075} \approx 1348.24 \] 6. Now, calculate \( P \): \[ P \approx \frac{1,200,000}{1348.24} \approx 889.84 \] Thus, Denise needs to make monthly payments of approximately **\$889.84** to reach her retirement goal of \$1.2 million.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad