Pregunta
Simplify. Assume all variables are positive. \[ \frac{c^{\frac{13}{5}}}{c^{\frac{6}{5}}} \] Write your answer in the form A or \( \frac{A}{B^{\prime}} \) where \( A \) and \( B \) are constants or variable expressions that have no variables in common. All exponents in your answer should be positive.
Ask by Flynn Mcdonald. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified form is \( c\sqrt[5]{c^{2}} \).
Solución
Calculate or simplify the expression \( \frac{c^{13/5}}{c^{6/5}} \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{c^{\frac{13}{5}}}{c^{\frac{6}{5}}}\)
- step1: Simplify the expression:
\(\frac{c^{\frac{13}{5}-\frac{6}{5}}}{1}\)
- step2: Simplify:
\(c^{\frac{13}{5}-\frac{6}{5}}\)
- step3: Calculate:
\(c^{\frac{7}{5}}\)
- step4: Simplify:
\(c\sqrt[5]{c^{2}}\)
The simplified form of the expression \( \frac{c^{\frac{13}{5}}}{c^{\frac{6}{5}}} \) is \( c\sqrt[5]{c^{2}} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify the expression \(\frac{c^{\frac{13}{5}}}{c^{\frac{6}{5}}}\), we can use the property of exponents which states that \(\frac{a^m}{a^n} = a^{m-n}\). Here, we have: \[ \frac{c^{\frac{13}{5}}}{c^{\frac{6}{5}}} = c^{\frac{13}{5} - \frac{6}{5}} = c^{\frac{13 - 6}{5}} = c^{\frac{7}{5}} \] Thus, the simplified form of the expression is: \[ c^{\frac{7}{5}} \] In the desired format, you can express this as: \[ \frac{c^7}{c^5} \] But the simplest answer in the required format is: \[ c^{\frac{7}{5}} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium