Responder
(a) John's monthly payment is \$2348.06.
(b) The total amount John will repay the loan is \$28176.76.
(c) The total interest John will pay is \$1176.76.
Solución
To solve this problem, we will use the formula for the monthly payment on an amortized loan, which is given by:
\[
M = P \frac{r(1 + r)^n}{(1 + r)^n - 1}
\]
where:
- \( M \) = monthly payment
- \( P \) = principal amount (the loan amount)
- \( r \) = monthly interest rate (annual interest rate divided by 12)
- \( n \) = total number of payments (loan term in months)
### Given Data:
- \( P = 27000 \)
- Annual interest rate = \( 7.95\% \)
- Loan term = 1 year = 12 months
### Step 1: Calculate the monthly interest rate
The monthly interest rate \( r \) can be calculated as follows:
\[
r = \frac{7.95\%}{12} = \frac{0.0795}{12}
\]
### Step 2: Calculate the total number of payments
The total number of payments \( n \) is:
\[
n = 12
\]
### Step 3: Calculate the monthly payment \( M \)
Now we can substitute the values into the monthly payment formula.
Let's calculate \( r \) and then \( M \).
1. Calculate \( r \):
\[
r = \frac{0.0795}{12}
\]
2. Substitute \( P \), \( r \), and \( n \) into the formula for \( M \):
\[
M = 27000 \frac{r(1 + r)^{12}}{(1 + r)^{12} - 1}
\]
Now, I will perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{0.0795}{12}\)
- step1: Convert the expressions:
\(\frac{\frac{159}{2000}}{12}\)
- step2: Multiply by the reciprocal:
\(\frac{159}{2000}\times \frac{1}{12}\)
- step3: Reduce the numbers:
\(\frac{53}{2000}\times \frac{1}{4}\)
- step4: Multiply the fractions:
\(\frac{53}{2000\times 4}\)
- step5: Multiply:
\(\frac{53}{8000}\)
Calculate or simplify the expression \( 27000*(0.0795/12)*(1+(0.0795/12))^12/((1+(0.0795/12))^12-1) \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{27000\left(\frac{0.0795}{12}\right)\left(1+\left(\frac{0.0795}{12}\right)\right)^{12}}{\left(\left(1+\left(\frac{0.0795}{12}\right)\right)^{12}-1\right)}\)
- step1: Remove the parentheses:
\(\frac{27000\left(\frac{0.0795}{12}\right)\left(1+\left(\frac{0.0795}{12}\right)\right)^{12}}{\left(1+\left(\frac{0.0795}{12}\right)\right)^{12}-1}\)
- step2: Divide the terms:
\(\frac{27000\left(\frac{0.0795}{12}\right)\left(1+\frac{53}{8000}\right)^{12}}{\left(1+\left(\frac{0.0795}{12}\right)\right)^{12}-1}\)
- step3: Add the numbers:
\(\frac{27000\left(\frac{0.0795}{12}\right)\left(\frac{8053}{8000}\right)^{12}}{\left(1+\left(\frac{0.0795}{12}\right)\right)^{12}-1}\)
- step4: Divide the terms:
\(\frac{27000\left(\frac{0.0795}{12}\right)\left(\frac{8053}{8000}\right)^{12}}{\left(1+\frac{53}{8000}\right)^{12}-1}\)
- step5: Add the numbers:
\(\frac{27000\left(\frac{0.0795}{12}\right)\left(\frac{8053}{8000}\right)^{12}}{\left(\frac{8053}{8000}\right)^{12}-1}\)
- step6: Divide the terms:
\(\frac{27000\times \frac{53}{8000}\left(\frac{8053}{8000}\right)^{12}}{\left(\frac{8053}{8000}\right)^{12}-1}\)
- step7: Multiply:
\(\frac{\frac{1431\times 8053^{12}}{8\times 8000^{12}}}{\left(\frac{8053}{8000}\right)^{12}-1}\)
- step8: Subtract the numbers:
\(\frac{\frac{1431\times 8053^{12}}{8\times 8000^{12}}}{\frac{8053^{12}-8000^{12}}{8000^{12}}}\)
- step9: Multiply by the reciprocal:
\(\frac{1431\times 8053^{12}}{8\times 8000^{12}}\times \frac{8000^{12}}{8053^{12}-8000^{12}}\)
- step10: Rewrite the expression:
\(\frac{1431\times 8053^{12}}{8\times 8000^{12}}\times \frac{64^{12}\times 125^{12}}{8053^{12}-8000^{12}}\)
- step11: Rewrite the expression:
\(\frac{1431\times 8053^{12}}{8\times 8000^{12}}\times \frac{8^{24}\times 125^{12}}{8053^{12}-8000^{12}}\)
- step12: Reduce the numbers:
\(\frac{1431\times 8053^{12}}{8000^{12}}\times \frac{8^{23}\times 125^{12}}{8053^{12}-8000^{12}}\)
- step13: Rewrite the expression:
\(\frac{1431\times 8053^{12}}{64^{12}\times 125^{12}}\times \frac{8^{23}\times 125^{12}}{8053^{12}-8000^{12}}\)
- step14: Rewrite the expression:
\(\frac{1431\times 8053^{12}}{8^{24}\times 125^{12}}\times \frac{8^{23}\times 125^{12}}{8053^{12}-8000^{12}}\)
- step15: Reduce the numbers:
\(\frac{1431\times 8053^{12}}{8}\times \frac{1}{8053^{12}-8000^{12}}\)
- step16: Multiply the fractions:
\(\frac{1431\times 8053^{12}}{8\left(8053^{12}-8000^{12}\right)}\)
- step17: Multiply:
\(\frac{1431\times 8053^{12}}{8\times 8053^{12}-8\times 8000^{12}}\)
### Step 1: Calculate the monthly interest rate \( r \)
The monthly interest rate is:
\[
r = \frac{0.0795}{12} \approx 0.006625
\]
### Step 2: Calculate the monthly payment \( M \)
Now substituting \( P = 27000 \), \( r \approx 0.006625 \), and \( n = 12 \) into the formula for \( M \):
\[
M = 27000 \frac{0.006625(1 + 0.006625)^{12}}{(1 + 0.006625)^{12} - 1}
\]
Calculating this gives:
\[
M \approx 2348.063438
\]
Rounding to the nearest cent, John's monthly payment is:
\[
\text{(a) } M \approx \$2348.06
\]
### Step 3: Calculate the total amount to repay the loan
The total amount to repay the loan is given by:
\[
\text{Total Repayment} = M \times n
\]
Substituting the values:
\[
\text{Total Repayment} = 2348.063438 \times 12
\]
Calculating this gives:
Calculate the value by following steps:
- step0: Calculate:
\(2348.063438\times 12\)
- step1: Multiply the numbers:
\(28176.761256\)
Calculating the total repayment:
\[
\text{Total Repayment} \approx 2348.063438 \times 12 \approx 28176.761256
\]
Rounding to the nearest cent, the total amount John will repay is:
\[
\text{(b) Total Amount to Repay} \approx \$28176.76
\]
### Step 4: Calculate the total amount of interest paid
The total interest paid can be calculated as:
\[
\text{Total Interest} = \text{Total Repayment} - P
\]
Substituting the values:
\[
\text{Total Interest} = 28176.761256 - 27000
\]
Calculating this gives:
Calculate the value by following steps:
- step0: Calculate:
\(28176.761256-27000\)
- step1: Subtract the numbers:
\(1176.761256\)
Calculating the total interest paid:
\[
\text{Total Interest} \approx 28176.761256 - 27000 \approx 1176.761256
\]
Rounding to the nearest cent, the total amount of interest John will pay is:
\[
\text{(c) Total Interest Paid} \approx \$1176.76
\]
### Summary of Answers:
- (a) Monthly Payment: \(\$2348.06\)
- (b) Total Amount to Repay: \(\$28176.76\)
- (c) Total Interest Paid: \(\$1176.76\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución