Pregunta
upstudy study bank question image url

\( \frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}} \) Answer \( \frac{1}{\sqrt[3]{\left(x^{2}+2\right)^{5}}} \) \( \sqrt[3]{\left(x^{2}+2\right)^{5}} \)

Ask by Cummings Brooks. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}} = \sqrt[3]{\left(x^{2}+2\right)^{5}} \]

Solución

Simplify the expression by following steps: - step0: Solution: \(\left(x^{2}+2\right)^{\frac{5}{3}}\) - step1: Simplify: \(x^{2}\sqrt[3]{\left(x^{2}+2\right)^{2}}+2\sqrt[3]{\left(x^{2}+2\right)^{2}}\) Calculate or simplify the expression \( 1/(x^2 + 2)^(-5/3) \). Simplify the expression by following steps: - step0: Solution: \(\frac{1}{\left(x^{2}+2\right)^{\frac{-5}{3}}}\) - step1: Rewrite the fraction: \(\frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}}\) - step2: Express with a positive exponent: \(\frac{1}{\frac{1}{\left(x^{2}+2\right)^{\frac{5}{3}}}}\) - step3: Multiply by the reciprocal: \(1\times \left(x^{2}+2\right)^{\frac{5}{3}}\) - step4: Multiply: \(\left(x^{2}+2\right)^{\frac{5}{3}}\) - step5: Simplify: \(x^{2}\sqrt[3]{\left(x^{2}+2\right)^{2}}+2\sqrt[3]{\left(x^{2}+2\right)^{2}}\) Let's break down the expression \( \frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}} \) step by step. 1. **Understanding the Expression**: The expression can be rewritten using the property of exponents: \[ \frac{1}{a^{-b}} = a^{b} \] Therefore, we have: \[ \frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}} = \left(x^{2}+2\right)^{\frac{5}{3}} \] 2. **Final Form**: The expression \( \left(x^{2}+2\right)^{\frac{5}{3}} \) can also be expressed in radical form: \[ \left(x^{2}+2\right)^{\frac{5}{3}} = \sqrt[3]{\left(x^{2}+2\right)^{5}} \] Thus, we conclude that: \[ \frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}} = \sqrt[3]{\left(x^{2}+2\right)^{5}} \] Both forms are equivalent, and the simplification confirms that the expression is indeed correct.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The expression \( \frac{1}{\left(x^{2}+2\right)^{-\frac{5}{3}}} \) can be simplified by understanding the properties of exponents. When you have a negative exponent, it indicates that the base should be moved to the denominator. Thus, the negative sign in the exponent means you flip the expression, resulting in \( \left(x^{2}+2\right)^{\frac{5}{3}} \) in the denominator, which can also be represented as \( \frac{1}{\sqrt[3]{\left(x^{2}+2\right)^{5}}} \). This transformation is handy in both algebra and calculus, particularly when dealing with derivatives or integrals. You might encounter such forms when working through simplifications or when applying the chain rule, as it's easier to differentiate powers than fractional powers. Just remember that converting back and forth between these forms helps maintain clarity, especially in more complex problems.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad