The operation " \( \hat{\prime \prime} \) " on the set of complex numbers is defined as \( z_{1} \otimes z_{2}=z_{1}+z_{2}+\left|z_{1} \cdot z_{2}\right| \) What is the equivalent of the operation \( (1-2 i) *(2+i) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the equivalent of the operation \( (1-2i) \otimes (2+i) \), we need to plug in the values into the defined operation. First, compute \( z_1 + z_2 \): \[ (1 - 2i) + (2 + i) = (1 + 2) + (-2i + i) = 3 - i \] Next, compute \( |z_1 \cdot z_2| \): \[ z_1 \cdot z_2 = (1 - 2i)(2 + i) = 1 \cdot 2 + 1 \cdot i - 2i \cdot 2 - 2i \cdot i = 2 + i - 4i + 2 = 4 - 3i \] Now, find the absolute value: \[ |4 - 3i| = \sqrt{4^2 + (-3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \] Now combine these results: \[ (1 - 2i) \otimes (2 + i) = (3 - i) + 5 = 8 - i \] Thus, the equivalent of the operation \( (1-2i) \otimes (2+i) \) is \( 8 - i \).