A quadratic function has its vertex at (3, -2) and opens upwards. If one of its x-intercepts is at x = 1, what could be another possible x-intercept?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find another possible x-intercept, we can use the fact that for a quadratic function, the vertex forms the midpoint of the x-intercepts. Since one x-intercept is at x = 1, we can denote the other x-intercept as \( x_2 \). The x-coordinate of the vertex (3) can be expressed as the average of the x-intercepts: \[ 3 = \frac{1 + x_2}{2} \] Solving for \( x_2 \): \[ 6 = 1 + x_2 \\ x_2 = 5 \] Thus, the other x-intercept could be at \( x = 5 \).