Pregunta
upstudy study bank question image url

Consider the graph of the functions \( f(x)=(x-5)^{2} \) and \( g(x)=-3 x+13 \). What are the points at which \( f(x)=g(x) \) ?

Ask by Ellis Reed. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The functions \( f(x) = (x - 5)^2 \) and \( g(x) = -3x + 13 \) intersect at the points \( (3, 4) \) and \( (4, 1) \).

Solución

To find the points where \( f(x) = g(x) \), we set the two functions equal to each other and solve for \( x \): \[ (x - 5)^2 = -3x + 13 \] **Step 1: Expand and Simplify** \[ x^2 - 10x + 25 = -3x + 13 \] Bring all terms to one side of the equation: \[ x^2 - 10x + 25 + 3x - 13 = 0 \] \[ x^2 - 7x + 12 = 0 \] **Step 2: Factor the Quadratic** \[ (x - 3)(x - 4) = 0 \] So, the solutions for \( x \) are: \[ x = 3 \quad \text{and} \quad x = 4 \] **Step 3: Find the Corresponding \( y \)-Values** Using \( g(x) = -3x + 13 \): - For \( x = 3 \): \[ y = -3(3) + 13 = -9 + 13 = 4 \] - For \( x = 4 \): \[ y = -3(4) + 13 = -12 + 13 = 1 \] **Final Answer:** The functions \( f(x) \) and \( g(x) \) intersect at the points \( (3, 4) \) and \( (4, 1) \). **Graphical Representation:** ![Graph of f(x)=(x-5)^2 and g(x)=-3x+13 showing intersection points at (3,4) and (4,1)](https://i.imgur.com/XYZ1234.png) *(Note: The image link is illustrative. Please plot the functions for a visual representation.)* **Conclusion:** The points of intersection are \( (3, 4) \) and \( (4, 1) \). **Answer:** After simplifying, the graphs meet at (3 , 4) and at (4, 1). Thus, the points are (3, 4) and (4, 1).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the points where \( f(x) = g(x) \), we set the equations equal to each other: \[ (x-5)^{2} = -3x + 13 \] Expanding the left side: \[ x^2 - 10x + 25 = -3x + 13 \] Rearranging the equation gives: \[ x^2 - 10x + 3x + 25 - 13 = 0 \] Simplifying this results in: \[ x^2 - 7x + 12 = 0 \] Now we can factor the quadratic: \[ (x - 3)(x - 4) = 0 \] Thus, the solutions are \( x = 3 \) and \( x = 4 \). To find the corresponding \( y \)-values, we can substitute these \( x \)-values back into either function. For \( x = 3 \): \[ f(3) = (3-5)^{2} = (-2)^{2} = 4 \] For \( x = 4 \): \[ f(4) = (4-5)^{2} = (-1)^{2} = 1 \] So the points at which \( f(x) = g(x) \) are \( (3, 4) \) and \( (4, 1) \).

preguntas relacionadas

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025

Latest Algebra Questions

7. Efectueaza sis scrie rezultatul sub formă de putere: \( \begin{array}{lll}\text { a) } \frac{18}{5} \cdot\left(\frac{18}{5}\right)^{2}= & \text { b) }\left(\frac{6}{5}\right)^{2} \cdot\left(\frac{6}{5}\right)^{3} \cdot \frac{6}{5}= & \text { c) }\left(\frac{19}{5}\right)^{5} \cdot\left(\frac{19}{5}\right)^{16}= \\ \begin{array}{lll}\text { d) } \frac{3}{2} \cdot\left(\frac{3}{2}\right)^{3} \cdot\left(\frac{3}{2}\right)^{0} \cdot\left(\frac{3}{2}\right)^{4}= & \text { e) }\left[\left(\frac{28}{5}\right)^{2}\right]^{3}= & \text { f) }\left[\left(\frac{5}{6}\right)^{6}\right]^{7}= \\ \text { g) }\left[\left(\frac{24}{5}\right)^{2} \cdot\left(\frac{24}{5}\right)^{3}\right]^{8}= & \text { h) }\left[\frac{5}{7} \cdot\left(\frac{5}{7}\right)^{0} \cdot\left(\frac{5}{7}\right)^{4}\right]^{5}= & \text { i) }\left(\frac{29}{10}\right)^{10}:\left(\frac{29}{10}\right)^{7}=\end{array} \\ \left.\left.\begin{array}{lll}\text { j) }\left(\frac{1}{3}\right)^{17}: \frac{1}{3}= & \left.\text { k) }\left(\frac{3}{7}\right)^{11} \cdot\left(\frac{9}{49}\right)^{3}:\left(\frac{3}{7}\right)^{15}=1\right)\end{array}\right]\left(1 \frac{1}{2}\right)^{2}\right]^{8}:\left(\frac{3}{2}\right)^{13}= \\ \text { m) }\left(\frac{9}{10}\right)^{7} \cdot\left(\frac{1}{5}\right)^{7}= & \text { n) }\left(\frac{5}{2}\right)^{10} \cdot\left(\frac{8}{5}\right)^{10}: 2^{10}= & \text { o) } 9^{3} \cdot\left(\frac{7}{10}\right)^{3}:\left(\frac{63}{10}\right)^{3}= \\ \text { p) }\left[\left(\frac{1}{5}\right)^{7}\right]^{2} \cdot 6^{14}:\left(\frac{6}{5}\right)^{14}= & \text { q) }\left(\frac{5}{2}\right)^{7}:\left(\frac{5}{2}\right)^{5}= & \end{array} \)
Álgebra Romania Jan 30, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad