Pregunta
upstudy study bank question image url

Solve for \( x \) \( f(x)=x+\frac{4}{3} \)

Ask by Barrett Cruz. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve for \( x \) in the equation \( f(x) = x + \frac{4}{3} \), you can set \( f(x) \) equal to zero and solve for \( x \): \[ x + \frac{4}{3} = 0 \implies x = -\frac{4}{3} \] So, \( x = -\frac{4}{3} \).

Solución

To solve for \( x \) in the equation \( f(x) = x + \frac{4}{3} \), we'll need to clarify the goal. Typically, "solving for \( x \)" involves finding the value of \( x \) that satisfies a particular condition for \( f(x) \). Here are a couple of possible interpretations: ### 1. Finding \( x \) When \( f(x) = 0 \) If you're looking to find the value of \( x \) that makes \( f(x) = 0 \), set the equation equal to zero and solve for \( x \): \[ f(x) = x + \frac{4}{3} = 0 \] **Steps:** \[ x + \frac{4}{3} = 0 \] \[ x = -\frac{4}{3} \] **Solution:** \[ x = -\frac{4}{3} \] ### 2. Expressing \( x \) in Terms of \( f(x) \) If you want to express \( x \) in terms of \( f(x) \), you can rearrange the original equation: \[ f(x) = x + \frac{4}{3} \] **Steps:** \[ x = f(x) - \frac{4}{3} \] **Result:** \[ x = f(x) - \frac{4}{3} \] ### 3. Finding a Fixed Point (\( f(x) = x \)) Another common interpretation is to find a fixed point where \( f(x) = x \): \[ x + \frac{4}{3} = x \] **Steps:** \[ x + \frac{4}{3} = x \] \[ \frac{4}{3} = 0 \] **Analysis:** This equation has no solution because \( \frac{4}{3} \) does not equal zero. Therefore, there is no fixed point for this function. --- **Summary:** - **If solving \( f(x) = 0 \):** \[ x = -\frac{4}{3} \] - **If expressing \( x \) in terms of \( f(x) \):** \[ x = f(x) - \frac{4}{3} \] - **If looking for a fixed point (\( f(x) = x \)):** No solution exists. If you had a different condition in mind for \( f(x) \), please provide additional details, and I'd be happy to help further!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve for \( x \) in the equation \( f(x) = x + \frac{4}{3} \), we need to set \( f(x) \) equal to zero: \[ 0 = x + \frac{4}{3} \] Now, we can isolate \( x \) by subtracting \( \frac{4}{3} \) from both sides: \[ x = -\frac{4}{3} \] Thus, the solution is \( x = -\frac{4}{3} \). Now let's explore this a bit more! Expressing the function in terms of its graphical representation can provide insight. The function \( f(x) = x + \frac{4}{3} \) is a linear function, which means it forms a straight line on the Cartesian plane. The y-intercept happens at \( \frac{4}{3} \), and the slope is 1, which indicates that for every 1 unit you move right, the function value increases by 1 unit. For practical applications, this equation can represent a scenario in economics — for instance, calculating profit where \( x \) is the cost and \( \frac{4}{3} \) is a fixed profit margin. Understanding linear relationships helps in budgeting, forecasting, and effective decision-making in business environments!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad