Pregunta
upstudy study bank question image url

Which expressions have exactly two foctors? Choose ALL that apply. ny 2 \( 3(b-1) \) \( a+7 \) 4.n.n \( m^{2}+8 \)

Ask by Chadwick Dunn. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expressions with exactly two factors are: - ny - 2 - \( 3(b-1) \)

Solución

To determine which expressions have exactly two factors, let's analyze each option: 1. **ny** - **Factors:** \( n \) and \( y \) - **Analysis:** This is already expressed as a product of two variables. - **Conclusion:** **Has exactly two factors.** 2. **2** - **Factors:** 1 and 2 - **Analysis:** As a constant, 2 is a prime number with only two distinct factors. - **Conclusion:** **Has exactly two factors.** 3. **\( 3(b-1) \)** - **Factors:** 3 and \( (b-1) \) - **Analysis:** This is a product of a constant and a binomial. - **Conclusion:** **Has exactly two factors.** 4. **\( a + 7 \)** - **Analysis:** This is a sum of two terms and cannot be factored into a product of two non-unit factors. - **Conclusion:** **Does not have exactly two factors.** 5. **4.n.n (interpreted as \( 4n^2 \))** - **Factors:** Can be written as \( (2n) \times (2n) \) or \( 4 \times n \times n \) - **Analysis:** This expression can be factored in multiple ways, involving more than two factors when broken down further. - **Conclusion:** **Does not have exactly two factors.** 6. **\( m^2 + 8 \)** - **Analysis:** This is a sum of squares (since 8 is not a perfect square) and cannot be factored into a product of two binomials over the integers. - **Conclusion:** **Does not have exactly two factors.** **Final Answer:** - **ny** - **2** - **\( 3(b-1) \)** These three expressions each have exactly two factors.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine which expressions have exactly two factors, we can look for expressions that can be factored into two parts or are already presented in a factored form. - The expressions \( 2 \) and \( 4.n.n \) (which is \( 4n^2 \)) can be factored into two parts simply as \( 2 \times 1 \) and \( 2n \times 2n \), respectively. - \( 3(b-1) \) also exhibits two factors, namely \( 3 \) and \( (b-1) \). - The expressions \( a+7 \) and \( m^{2}+8 \) cannot be factored into two distinct factors over the integers, making them not applicable here. Thus, the expressions with exactly two factors are \( 2 \), \( 3(b-1) \), and \( 4.n.n \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad