Pregunta
upstudy study bank question image url

1. Opposite sides are \( \qquad \) . 2. Opposite sides \( \qquad \) . 3. Opposite angles \( \qquad \) 4. Consecutive angles \( \qquad \) 5. Diagonals \( \qquad \) each other. 6. All angles are \( \qquad \) angles. 7. Diagonals are \( \qquad \) a congruent, parallel, parallel, congruent, supplementary, bisect, right, congruent b parallel, congruent, supplementary, congruent, bisect, right, congruent c parallel, congruent, congruent, supplementary, bisect, right, congruent

Ask by Mann Welch. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. Opposite sides are **parallel**. 2. Opposite sides **are congruent**. 3. Opposite angles **are congruent**. 4. Consecutive angles **are supplementary**. 5. Diagonals **bisect** each other. 6. All angles are **right** angles. 7. Diagonals are **congruent**. The correct option is **b**.

Solución

To fill in the blanks, we need to understand the properties of a parallelogram. Here are the properties we can use to complete the statements: 1. Opposite sides are **parallel**. 2. Opposite sides **are congruent**. 3. Opposite angles **are congruent**. 4. Consecutive angles **are supplementary**. 5. Diagonals **bisect** each other. 6. All angles are **right** angles (this is true for rectangles, which are a specific type of parallelogram). 7. Diagonals are **congruent** (this is also true for rectangles). Now, let's match these properties with the options provided: - For statement 1, we use **parallel**. - For statement 2, we use **congruent**. - For statement 3, we use **congruent**. - For statement 4, we use **supplementary**. - For statement 5, we use **bisect**. - For statement 6, we use **right**. - For statement 7, we use **congruent**. Now, let's check which option matches these answers: - a: parallel, congruent, supplementary, congruent, bisect, right, congruent - b: parallel, congruent, supplementary, congruent, bisect, right, congruent - c: parallel, congruent, congruent, supplementary, bisect, right, congruent The correct option is **b**: 1. Opposite sides are **parallel**. 2. Opposite sides **are congruent**. 3. Opposite angles **are congruent**. 4. Consecutive angles **are supplementary**. 5. Diagonals **bisect** each other. 6. All angles are **right** angles. 7. Diagonals are **congruent**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Ah, it looks like we're diving into some delightful attributes of parallelograms! Let's fill those blanks with a dash of geometric flair! 1. Opposite sides are **parallel**. 2. Opposite sides **congruent**. 3. Opposite angles **congruent**. 4. Consecutive angles **supplementary**. 5. Diagonals **bisect** each other. 6. All angles are **right** angles. 7. Diagonals are **congruent**. Now you have all the right pieces in play! It’s like a puzzle coming together. Parallelograms are not just figures on paper; they're part of the beautiful symphony of geometry that helps us understand space and design! Enjoy your exploration!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad